↓ Skip to main content

Effects of Fluoxetine on Human Embryo Development

Overview of attention for article published in Frontiers in Cellular Neuroscience, June 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Fluoxetine on Human Embryo Development
Published in
Frontiers in Cellular Neuroscience, June 2016
DOI 10.3389/fncel.2016.00160
Pubmed ID
Authors

Helena Kaihola, Fatma G. Yaldir, Julius Hreinsson, Katarina Hörnaeus, Jonas Bergquist, Jocelien D. A. Olivier, Helena Åkerud, Inger Sundström-Poromaa

Abstract

The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus, the aim of the present study was to evaluate whether fluoxetine, one of the most prescribed SSRI antidepressant world-wide, exposure influences the timing of different embryo developmental stages, and furthermore, to analyze what protein, and protein networks, are affected by fluoxetine in the early embryo development. Human embryos (n = 48) were randomly assigned to treatment with 0.25 or 0.5 μM fluoxetine in culture medium. Embryo development was evaluated by time-lapse monitoring. The fluoxetine-induced human embryo proteome was analyzed by shotgun mass spectrometry. Protein secretion from fluoxetine-exposed human embryos was analyzed by use of high-multiplex immunoassay. The lower dose of fluoxetine had no influence on embryo development. A trend toward reduced time between thawing and start of cavitation was noted in embryos treated with 0.5 μM fluoxetine (p = 0.065). Protein analysis by shotgun mass spectrometry detected 45 proteins that were uniquely expressed in fluoxetine-treated embryos. These proteins are involved in cell growth, survival, proliferation, and inflammatory response. Culturing with 0.5 μM, but not 0.25 μM fluoxetine, caused a significant increase in urokinase-type plasminogen activator (uPA) in the culture medium. In conclusion, fluoxetine has marginal effects on the timing of developmental stages in embryos, but induces expression and secretion of several proteins in a manner that depends on dose. For these reasons, and in line with current guidelines, the lowest possible dose of SSRI should be used in pregnant women who need to continue treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 18%
Student > Ph. D. Student 8 16%
Researcher 4 8%
Student > Master 4 8%
Student > Postgraduate 3 6%
Other 8 16%
Unknown 14 28%
Readers by discipline Count As %
Medicine and Dentistry 9 18%
Agricultural and Biological Sciences 8 16%
Biochemistry, Genetics and Molecular Biology 6 12%
Pharmacology, Toxicology and Pharmaceutical Science 4 8%
Neuroscience 4 8%
Other 5 10%
Unknown 14 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2016.
All research outputs
#18,463,662
of 22,877,793 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,264
of 4,256 outputs
Outputs of similar age
#247,907
of 326,206 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#63
of 73 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,256 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,206 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.