↓ Skip to main content

Long Non-coding RNA TUSC7, a Target of miR-23b, Plays Tumor-Suppressing Roles in Human Gliomas

Overview of attention for article published in Frontiers in Cellular Neuroscience, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
73 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Long Non-coding RNA TUSC7, a Target of miR-23b, Plays Tumor-Suppressing Roles in Human Gliomas
Published in
Frontiers in Cellular Neuroscience, October 2016
DOI 10.3389/fncel.2016.00235
Pubmed ID
Authors

Chao Shang, Yan Guo, Yang Hong, Yi-xue Xue

Abstract

Tumour suppressor candidate 7 (TUSC7) is a novel tumor suppressor gene generating long non-coding RNA (lncRNAs) in several types of human cancers. The expression and function of TUSC7 in human brain glioma has yet to be elucidated. In this study, TUSC7 was poorly expressed in tissues and cell lines of glioma, and the lower expression was correlated with glioma of the worse histological grade. Moreover, TUSC7 is a prognostic biomarker of glioma patients. Up-regulation of TUSC7 suppressed cellular proliferation and invasion of glioma cells, and accelerated cellular apoptosis. Bioinformatics analysis showed that TUSC7 specifically binds to miR-23b. MiR-23b was up-regulated in glioma and negatively correlated with the expression of TUSC7. The miR-23b expression was inhibited remarkably by the upregulation of TUSC7 and the reciprocal inhibition was determined between TUSC7 and miR-23b.RNA pull-down and luciferase reporter assays were used to validate the sequence-specific correlation between miR-23b and TUSC7. TUSC7 inhibited the proliferation, migration and invasion of glioma cells and promoted cellular apoptosis largely bypassing miR-23b. We conclude that the lncRNA TUSC7 acted as a tumor suppressor gene negatively regulated by miR-23b, suggesting a novel therapeutic strategy against gliomas.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 21%
Student > Master 2 14%
Lecturer 1 7%
Student > Bachelor 1 7%
Other 1 7%
Other 3 21%
Unknown 3 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 21%
Medicine and Dentistry 3 21%
Immunology and Microbiology 1 7%
Agricultural and Biological Sciences 1 7%
Psychology 1 7%
Other 1 7%
Unknown 4 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2016.
All research outputs
#20,344,065
of 22,890,496 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,586
of 4,256 outputs
Outputs of similar age
#276,847
of 319,894 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#41
of 64 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,256 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,894 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.