↓ Skip to main content

The Effect of Serotonin-Targeting Antidepressants on Neurogenesis and Neuronal Maturation of the Hippocampus Mediated via 5-HT1A and 5-HT4 Receptors

Overview of attention for article published in Frontiers in Cellular Neuroscience, May 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#40 of 4,769)
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
9 news outlets
blogs
1 blog
twitter
20 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
145 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effect of Serotonin-Targeting Antidepressants on Neurogenesis and Neuronal Maturation of the Hippocampus Mediated via 5-HT1A and 5-HT4 Receptors
Published in
Frontiers in Cellular Neuroscience, May 2017
DOI 10.3389/fncel.2017.00142
Pubmed ID
Authors

Eri Segi-Nishida

Abstract

Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) specifically increase serotonin (5-HT) levels in the synaptic cleft and are widely used to treat mood and anxiety disorders. There are 14 established subtypes of 5-HT receptors in rodents, each of which has regionally different expression patterns. Many preclinical studies have suggested that the hippocampus, which contains abundant 5-HT1A and 5-HT4 receptor subtypes in the dentate gyrus (DG), is critically involved in the mechanisms of action of antidepressants. This review article will analyze studies demonstrating regulation of hippocampal functions and hippocampus-dependent behaviors by SSRIs and similar serotonergic agents. Multiple studies indicate that 5-HT1A and 5-HT4 receptor signaling in the DG contributes to SSRI-mediated promotion of neurogenesis and increased neurotrophic factors expression. Chronic SSRI treatment causes functions and phenotypes of mature granule cells (GCs) to revert to immature-like phenotypes defined as a "dematured" state in the DG, and to increase monoamine reactivity at the dentate-to-CA3 synapses, via 5-HT4 receptor signaling. Behavioral studies demonstrate that the 5-HT1A receptors on mature GCs are critical for expression of antidepressant effects in the forced swim test and in novelty suppressed feeding; such studies also note that 5-HT4 receptors mediate neurogenesis-dependent antidepressant activity in, for example, novelty-suppressed feeding. Despite their limitations, the collective results of these studies describe a potential new mechanism of action, in which 5-HT1A and 5-HT4 receptor signaling, either independently or cooperatively, modulates the function of the hippocampal DG at multiple levels, any of which could play a critical role in the antidepressant actions of 5-HT-enhancing drugs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 145 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 145 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 28 19%
Student > Master 20 14%
Student > Ph. D. Student 15 10%
Researcher 9 6%
Student > Doctoral Student 8 6%
Other 23 16%
Unknown 42 29%
Readers by discipline Count As %
Neuroscience 27 19%
Biochemistry, Genetics and Molecular Biology 13 9%
Medicine and Dentistry 13 9%
Pharmacology, Toxicology and Pharmaceutical Science 12 8%
Agricultural and Biological Sciences 8 6%
Other 24 17%
Unknown 48 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 93. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2023.
All research outputs
#472,634
of 26,020,829 outputs
Outputs from Frontiers in Cellular Neuroscience
#40
of 4,769 outputs
Outputs of similar age
#9,496
of 329,000 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#2
of 95 outputs
Altmetric has tracked 26,020,829 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,769 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,000 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 95 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.