↓ Skip to main content

RIM-Binding Protein 2 Promotes a Large Number of CaV1.3 Ca2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones

Overview of attention for article published in Frontiers in Cellular Neuroscience, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RIM-Binding Protein 2 Promotes a Large Number of CaV1.3 Ca2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones
Published in
Frontiers in Cellular Neuroscience, November 2017
DOI 10.3389/fncel.2017.00334
Pubmed ID
Authors

Stefanie Krinner, Tanvi Butola, SangYong Jung, Carolin Wichmann, Tobias Moser

Abstract

Ribbon synapses of inner hair cells (IHCs) mediate high rates of synchronous exocytosis to indefatigably track the stimulating sound with sub-millisecond precision. The sophisticated molecular machinery of the inner hair cell active zone realizes this impressive performance by enabling a large number of synaptic voltage-gated CaV1.3 Ca(2+)-channels, their tight coupling to synaptic vesicles (SVs) and fast replenishment of fusion competent SVs. Here we studied the role of RIM-binding protein 2 (RIM-BP2)-a multidomain cytomatrix protein known to directly interact with Rab3 interacting molecules (RIMs), bassoon and CaV1.3-that is present at the inner hair cell active zones. We combined confocal and stimulated emission depletion (STED) immunofluorescence microscopy, electron tomography, patch-clamp and confocal Ca(2+)-imaging, as well as auditory systems physiology to explore the morphological and functional effects of genetic RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. We found that RIM-BP2 (1) positively regulates the number of synaptic CaV1.3 channels and thereby facilitates synaptic vesicle release and (2) supports fast synaptic vesicle recruitment after readily releasable pool (RRP) depletion. However, Ca(2+)-influx-exocytosis coupling seemed unaltered for readily releasable SVs. Recordings of auditory brainstem responses (ABR) and of single auditory nerve fiber firing showed that RIM-BP2 disruption results in a mild deficit of synaptic sound encoding.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 23%
Researcher 6 13%
Student > Doctoral Student 5 10%
Student > Bachelor 5 10%
Student > Master 5 10%
Other 6 13%
Unknown 10 21%
Readers by discipline Count As %
Neuroscience 18 38%
Agricultural and Biological Sciences 10 21%
Biochemistry, Genetics and Molecular Biology 4 8%
Engineering 3 6%
Medicine and Dentistry 1 2%
Other 2 4%
Unknown 10 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2019.
All research outputs
#14,830,566
of 23,007,887 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,376
of 4,263 outputs
Outputs of similar age
#192,618
of 329,249 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#60
of 116 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.