↓ Skip to main content

Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels

Overview of attention for article published in Frontiers in Cellular Neuroscience, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels
Published in
Frontiers in Cellular Neuroscience, November 2017
DOI 10.3389/fncel.2017.00341
Pubmed ID
Authors

Katarzyna Grzelka, Przemysław Kurowski, Maciej Gawlak, Paweł Szulczyk

Abstract

The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 25%
Researcher 12 13%
Student > Bachelor 9 10%
Student > Master 8 9%
Student > Doctoral Student 7 8%
Other 15 16%
Unknown 19 20%
Readers by discipline Count As %
Neuroscience 32 34%
Agricultural and Biological Sciences 11 12%
Psychology 9 10%
Medicine and Dentistry 6 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 3%
Other 8 9%
Unknown 24 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2017.
All research outputs
#20,451,991
of 23,007,887 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,590
of 4,263 outputs
Outputs of similar age
#286,907
of 329,249 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#101
of 116 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.