↓ Skip to main content

The Importance of the Dissociation Rate in Ion Channel Blocking

Overview of attention for article published in Frontiers in Cellular Neuroscience, February 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Importance of the Dissociation Rate in Ion Channel Blocking
Published in
Frontiers in Cellular Neuroscience, February 2018
DOI 10.3389/fncel.2018.00033
Pubmed ID
Authors

Hugo Zeberg, Johanna Nilsson, Peter Århem

Abstract

Understanding the relationships between the rates and dynamics of current wave forms under voltage clamp conditions is essential for understanding phenomena such as state-dependence and use-dependence, which are fundamental for the action of drugs used as anti-epileptics, anti-arrhythmics, and anesthetics. In the present study, we mathematically analyze models of blocking mechanisms. In previous experimental studies of potassium channels we have shown that the effect of local anesthetics can be explained by binding to channels in the open state. We therefore here examine models that describe the effect of a blocking drug that binds to a non-inactivating channel in its open state. Such binding induces an inactivation-like current decay at higher potential steps. The amplitude of the induced peak depends on voltage and concentration of blocking drug. In the present study, using analytical methods, we (i) derive a criterion for the existence of a peak in the open probability time evolution for a model with an arbitrary number of closed states, (ii) derive formula for the relative height of the peak amplitude, and (iii) determine the voltage dependence of the relative peak height. Two findings are apparent: (1) the dissociation (unbinding) rate constant is important for the existence of a peak in the current waveform, while the association (binding) rate constant is not, and (2) for a peak to exist it suffices that the dissociation rate must be smaller than the absolute value of all eigenvalues to the kinetic matrix describing the model.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 40%
Researcher 2 20%
Student > Bachelor 1 10%
Student > Master 1 10%
Other 1 10%
Other 0 0%
Unknown 1 10%
Readers by discipline Count As %
Neuroscience 3 30%
Biochemistry, Genetics and Molecular Biology 2 20%
Physics and Astronomy 1 10%
Agricultural and Biological Sciences 1 10%
Medicine and Dentistry 1 10%
Other 1 10%
Unknown 1 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 February 2018.
All research outputs
#17,930,799
of 23,023,224 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,958
of 4,265 outputs
Outputs of similar age
#311,743
of 442,600 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#63
of 97 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,265 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,600 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.