↓ Skip to main content

Differential Roles of Mitochondrial Translocation of Active Caspase-3 and HMGB1 in Neuronal Death Induced by Status Epilepticus

Overview of attention for article published in Frontiers in Cellular Neuroscience, September 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Roles of Mitochondrial Translocation of Active Caspase-3 and HMGB1 in Neuronal Death Induced by Status Epilepticus
Published in
Frontiers in Cellular Neuroscience, September 2018
DOI 10.3389/fncel.2018.00301
Pubmed ID
Authors

Ji-Eun Kim, Tae-Cheon Kang

Abstract

Under pathophysiological conditions, aberrant mitochondrial dynamics lead to the different types of neuronal death: excessive mitochondrial fission provokes apoptosis and abnormal mitochondrial elongation induces necrosis. However, the underlying mechanisms how the different mitochondrial dynamics result in the distinct neuronal death patterns have been elusive. In the present study, status epilepticus (SE) evoked excessive mitochondrial fission in parvalbumin (PV) cells (one of GABAergic interneurons) and abnormal mitochondrial elongation in CA1 neurons in the rat hippocampus. These impaired mitochondrial dynamics were accompanied by mitochondrial translocations of active caspase-3 and high mobility group box 1 (HMGB1) in PV cells and CA1 neurons, respectively. WY14643 (an activator of mitochondrial fission) aggravated SE-induced PV cell loss by enhancing active caspase-3 induction and its mitochondrial translocation, which were attenuated by Mdivi-1 (an inhibitor of mitochondrial fission). Mitochondrial HMGB1 import was not observed in PV cell. In contrast to PV cells, Mdivi-1 deteriorated SE-induced CA1 neuronal death concomitant with mitochondrial HMGB1 translocation, which was abrogated by WY14643. These findings suggest that SE-induced aberrant mitochondrial dynamics may be involved in translocation of active caspase-3 and HMGB1 into mitochondria, which regulate neuronal apoptosis and necrosis, respectively.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 22%
Student > Bachelor 3 17%
Researcher 2 11%
Student > Master 2 11%
Professor 1 6%
Other 3 17%
Unknown 3 17%
Readers by discipline Count As %
Neuroscience 5 28%
Medicine and Dentistry 3 17%
Immunology and Microbiology 2 11%
Computer Science 1 6%
Agricultural and Biological Sciences 1 6%
Other 1 6%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2018.
All research outputs
#21,718,402
of 26,680,103 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,765
of 4,828 outputs
Outputs of similar age
#273,469
of 349,537 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#130
of 155 outputs
Altmetric has tracked 26,680,103 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,828 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 349,537 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 155 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.