↓ Skip to main content

Sparsely Distributed, Pre-synaptic Kv3 K+ Channels Control Spontaneous Firing and Cross-Unit Synchrony via the Regulation of Synaptic Noise in an Auditory Brainstem Circuit

Overview of attention for article published in Frontiers in Cellular Neuroscience, September 2021
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sparsely Distributed, Pre-synaptic Kv3 K+ Channels Control Spontaneous Firing and Cross-Unit Synchrony via the Regulation of Synaptic Noise in an Auditory Brainstem Circuit
Published in
Frontiers in Cellular Neuroscience, September 2021
DOI 10.3389/fncel.2021.721371
Pubmed ID
Authors

Timothy OIsen, Alberto Capurro, Maša Švent, Nadia Pilati, Charles Large, Nick Hartell, Martine Hamann

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 30%
Student > Ph. D. Student 1 10%
Unspecified 1 10%
Other 1 10%
Student > Postgraduate 1 10%
Other 0 0%
Unknown 3 30%
Readers by discipline Count As %
Neuroscience 3 30%
Linguistics 1 10%
Unspecified 1 10%
Psychology 1 10%
Earth and Planetary Sciences 1 10%
Other 0 0%
Unknown 3 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2021.
All research outputs
#21,026,077
of 23,661,575 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,717
of 4,391 outputs
Outputs of similar age
#357,188
of 430,619 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#125
of 145 outputs
Altmetric has tracked 23,661,575 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,391 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 430,619 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.