↓ Skip to main content

Spectrotemporal sound preferences of neighboring inferior colliculus neurons: implications for local circuitry and processing

Overview of attention for article published in Frontiers in Neural Circuits, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spectrotemporal sound preferences of neighboring inferior colliculus neurons: implications for local circuitry and processing
Published in
Frontiers in Neural Circuits, January 2012
DOI 10.3389/fncir.2012.00062
Pubmed ID
Authors

Chen Chen, Francisco C. Rodriguez, Heather L. Read, Monty A. Escabí

Abstract

How do local circuits in the inferior colliculus (IC) process and transform spectral and temporal sound information? Using a four-tetrode array we examined the functional properties of the IC and metrics of its micro circuitry by recording neural activity from neighboring single neurons in the cat. Spectral and temporal response preferences were compared for neurons found on the same and adjacent tetrodes (ATs), as well as across distant recording sites. We found that neighboring neurons had similar preferences while neurons recorded across distant sites were less similar. Best frequency (BF) was the most correlated parameter between neighboring neurons and BF differences exhibited unique clustering at ~0.3 octave intervals, indicative of the frequency band lamina. Other spectral and temporal parameters of the receptive fields were more similar for neighboring neurons than for those at distant sites and the receptive field similarity was larger for neurons with small differences in BF. Furthermore, correlated firing was stronger for neighboring neuron pairs and increased with proximity and decreasing BF difference. Thus, although response selectivities are quite diverse in the IC, spectral, and temporal preference within a local microcircuit are functionally quite similar. This suggests a scheme where local circuits are organized into zones that are specialized for processing distinct spectrotemporal cues.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 6%
Unknown 32 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Researcher 6 18%
Student > Master 5 15%
Student > Doctoral Student 3 9%
Lecturer > Senior Lecturer 2 6%
Other 3 9%
Unknown 7 21%
Readers by discipline Count As %
Neuroscience 9 26%
Agricultural and Biological Sciences 8 24%
Engineering 4 12%
Medicine and Dentistry 3 9%
Physics and Astronomy 1 3%
Other 1 3%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2012.
All research outputs
#20,167,959
of 22,679,690 outputs
Outputs from Frontiers in Neural Circuits
#1,023
of 1,207 outputs
Outputs of similar age
#221,189
of 244,102 outputs
Outputs of similar age from Frontiers in Neural Circuits
#44
of 73 outputs
Altmetric has tracked 22,679,690 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,207 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,102 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.