↓ Skip to main content

The level and distribution of the GABABR1 and GABABR2 receptor subunits in the rat's inferior colliculus

Overview of attention for article published in Frontiers in Neural Circuits, January 2012
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The level and distribution of the GABABR1 and GABABR2 receptor subunits in the rat's inferior colliculus
Published in
Frontiers in Neural Circuits, January 2012
DOI 10.3389/fncir.2012.00092
Pubmed ID
Authors

Lena Jamal, Aziz N. Khan, Sehrish Butt, Chirag R. Patel, Huiming Zhang

Abstract

The type B γ-aminobutyric acid receptor (GABA(B) receptor) is an important neurotransmitter receptor in the midbrain auditory structure, the inferior colliculus (IC). A functional GABA(B) receptor is a heterodimer consisting of two subunits, GABA(B)R1 and GABA(B)R2. Western blotting and immunohistochemical experiments were conducted to examine the expression of the two subunits over the IC including its central nucleus, dorsal cortex, and external cortex (ICc, ICd, and ICx). Results revealed that the two subunits existed in both cell bodies and the neuropil throughout the IC. The two subunits had similar regional distributions over the IC. The combined level of cell body and neuropil labeling was higher in the ICd than the other two subdivisions. Labeling in the ICc and ICx was stronger in the dorsal than the ventral regions. In spite of regional differences, no defined boundaries were formed between different areas. For both subunits, the regional distribution of immunoreactivity in the neuropil was parallel to that of combined immunoreactivity in the neuropil and cell bodies. The density of labeled cell bodies tended to be higher but sizes of cell bodies tended to be smaller in the ICd than in the other subdivisions. No systematic regional changes were found in the level of cell body immunoreactivity, except that GABA(B)R2-immunoreactive cell bodies in the ICd had slightly higher optic density (OD) than in other regions. Elongated cell bodies existed throughout the IC. Many labeled cell bodies along the outline of the IC were oriented in parallel to the outline. No strong tendency of orientation was found in labeled cell bodies in ICc. Regional distributions of the subunits in ICc correlated well with inputs to this subdivision. Our finding regarding the contrast in the level of neuropil immunoreactivity among different subdivisions is consistent with the fact that the GABA(B) receptor has different pre- and postsynaptic functions in different IC regions.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 16%
Student > Master 3 16%
Student > Ph. D. Student 3 16%
Student > Doctoral Student 2 11%
Researcher 2 11%
Other 2 11%
Unknown 4 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 32%
Neuroscience 5 26%
Medicine and Dentistry 2 11%
Arts and Humanities 1 5%
Unspecified 1 5%
Other 0 0%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2018.
All research outputs
#15,256,901
of 22,687,320 outputs
Outputs from Frontiers in Neural Circuits
#775
of 1,209 outputs
Outputs of similar age
#163,202
of 244,125 outputs
Outputs of similar age from Frontiers in Neural Circuits
#25
of 73 outputs
Altmetric has tracked 22,687,320 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,209 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,125 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.