↓ Skip to main content

Functional transformations of odor inputs in the mouse olfactory bulb

Overview of attention for article published in Frontiers in Neural Circuits, January 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional transformations of odor inputs in the mouse olfactory bulb
Published in
Frontiers in Neural Circuits, January 2014
DOI 10.3389/fncir.2014.00129
Pubmed ID
Authors

Yoav Adam, Yoav Livneh, Kazunari Miyamichi, Maya Groysman, Liqun Luo, Adi Mizrahi

Abstract

Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 3 3%
United States 2 2%
France 1 <1%
Portugal 1 <1%
Japan 1 <1%
United Kingdom 1 <1%
Unknown 92 91%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 27%
Researcher 23 23%
Student > Master 12 12%
Student > Bachelor 9 9%
Professor > Associate Professor 5 5%
Other 11 11%
Unknown 14 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 36%
Neuroscience 33 33%
Medicine and Dentistry 5 5%
Biochemistry, Genetics and Molecular Biology 4 4%
Computer Science 2 2%
Other 5 5%
Unknown 16 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2015.
All research outputs
#14,203,791
of 22,769,322 outputs
Outputs from Frontiers in Neural Circuits
#660
of 1,213 outputs
Outputs of similar age
#173,696
of 305,310 outputs
Outputs of similar age from Frontiers in Neural Circuits
#7
of 13 outputs
Altmetric has tracked 22,769,322 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,213 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,310 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.