↓ Skip to main content

Neuronal Assemblies Evidence Distributed Interactions within a Tactile Discrimination Task in Rats

Overview of attention for article published in Frontiers in Neural Circuits, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
2 news outlets
twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuronal Assemblies Evidence Distributed Interactions within a Tactile Discrimination Task in Rats
Published in
Frontiers in Neural Circuits, January 2018
DOI 10.3389/fncir.2017.00114
Pubmed ID
Authors

Camila S. Deolindo, Ana C. B. Kunicki, Maria I. da Silva, Fabrício Lima Brasil, Renan C. Moioli

Abstract

Accumulating evidence suggests that neural interactions are distributed and relate to animal behavior, but many open questions remain. The neural assembly hypothesis, formulated by Hebb, states that synchronously active single neurons may transiently organize into functional neural circuits-neuronal assemblies (NAs)-and that would constitute the fundamental unit of information processing in the brain. However, the formation, vanishing, and temporal evolution of NAs are not fully understood. In particular, characterizing NAs in multiple brain regions over the course of behavioral tasks is relevant to assess the highly distributed nature of brain processing. In the context of NA characterization, active tactile discrimination tasks with rats are elucidative because they engage several cortical areas in the processing of information that are otherwise masked in passive or anesthetized scenarios. In this work, we investigate the dynamic formation of NAs within and among four different cortical regions in long-range fronto-parieto-occipital networks (primary somatosensory, primary visual, prefrontal, and posterior parietal cortices), simultaneously recorded from seven rats engaged in an active tactile discrimination task. Our results first confirm that task-related neuronal firing rate dynamics in all four regions is significantly modulated. Notably, a support vector machine decoder reveals that neural populations contain more information about the tactile stimulus than the majority of single neurons alone. Then, over the course of the task, we identify the emergence and vanishing of NAs whose participating neurons are shown to contain more information about animal behavior than randomly chosen neurons. Taken together, our results further support the role of multiple and distributed neurons as the functional unit of information processing in the brain (NA hypothesis) and their link to active animal behavior.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 21%
Researcher 9 19%
Student > Master 8 17%
Student > Bachelor 3 6%
Student > Postgraduate 2 4%
Other 4 8%
Unknown 12 25%
Readers by discipline Count As %
Neuroscience 16 33%
Agricultural and Biological Sciences 5 10%
Medicine and Dentistry 4 8%
Computer Science 3 6%
Engineering 3 6%
Other 5 10%
Unknown 12 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2020.
All research outputs
#1,663,011
of 23,016,919 outputs
Outputs from Frontiers in Neural Circuits
#61
of 1,222 outputs
Outputs of similar age
#41,447
of 443,312 outputs
Outputs of similar age from Frontiers in Neural Circuits
#3
of 36 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,222 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,312 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.