↓ Skip to main content

Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems

Overview of attention for article published in Frontiers in Neural Circuits, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
13 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
121 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems
Published in
Frontiers in Neural Circuits, January 2018
DOI 10.3389/fncir.2018.00004
Pubmed ID
Authors

Xiao Yu, Nicholas P. Franks, William Wisden

Abstract

Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX), a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG) resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure-it is used for long term sedation in hospital intensive care units-under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 121 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 18%
Researcher 19 16%
Student > Bachelor 13 11%
Student > Master 13 11%
Student > Doctoral Student 9 7%
Other 15 12%
Unknown 30 25%
Readers by discipline Count As %
Neuroscience 22 18%
Medicine and Dentistry 20 17%
Agricultural and Biological Sciences 13 11%
Nursing and Health Professions 10 8%
Psychology 5 4%
Other 19 16%
Unknown 32 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2018.
All research outputs
#5,763,116
of 23,577,654 outputs
Outputs from Frontiers in Neural Circuits
#319
of 1,243 outputs
Outputs of similar age
#113,409
of 443,291 outputs
Outputs of similar age from Frontiers in Neural Circuits
#9
of 32 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,243 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,291 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.