↓ Skip to main content

On the dynamics of cortical development: synchrony and synaptic self-organization

Overview of attention for article published in Frontiers in Computational Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On the dynamics of cortical development: synchrony and synaptic self-organization
Published in
Frontiers in Computational Neuroscience, January 2013
DOI 10.3389/fncom.2013.00004
Pubmed ID
Authors

James Joseph Wright, Paul David Bourke

Abstract

We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristics. Consequently, in the visual cortex, macrocolumns linked by superficial patchy connections emerge in anatomically realistic patterns, with an ante-natal arrangement which projects signals from the surrounding cortex onto each macrocolumn in a form analogous to the projection of a Euclidean plane onto a Möbius strip. This configuration reproduces typical cortical response maps, and simulations of signal flow explain cortical responses to moving lines as functions of stimulus velocity, length, and orientation. With the introduction of direct visual inputs, under the operation of Hebbian learning, development of mature selective response "tuning" to stimuli of given orientation, spatial frequency, and temporal frequency would then take place, overwriting the earlier ante-natal configuration. The model is provisionally extended to hierarchical interactions of the visual cortex with higher centers, and a general principle for cortical processing of spatio-temporal images is sketched.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 2 5%
Germany 1 3%
Belarus 1 3%
Unknown 35 90%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 31%
Researcher 7 18%
Student > Master 6 15%
Professor 4 10%
Professor > Associate Professor 4 10%
Other 2 5%
Unknown 4 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 33%
Neuroscience 7 18%
Psychology 3 8%
Physics and Astronomy 3 8%
Computer Science 2 5%
Other 6 15%
Unknown 5 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2013.
All research outputs
#12,677,522
of 22,696,971 outputs
Outputs from Frontiers in Computational Neuroscience
#449
of 1,336 outputs
Outputs of similar age
#150,670
of 280,682 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#36
of 131 outputs
Altmetric has tracked 22,696,971 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,336 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,682 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.