↓ Skip to main content

Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

Overview of attention for article published in Frontiers in Computational Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip
Published in
Frontiers in Computational Neuroscience, January 2013
DOI 10.3389/fncom.2013.00040
Pubmed ID
Authors

Tomohiko Takei, Kazuhiko Seki

Abstract

Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs) in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL) and functional linkage (FL) of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6-T1), with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs) of rectified EMGs were compiled for 456 neuron-muscle pairs; 63 pairs showed significant post-spike effects (PSEs; i.e., SL). Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL). Importantly, a greater proportion of the neuron-muscle pairs with SL showed FL (43/63 pairs, 68%) compared with the pairs without SL (203/393, 52%), and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20) or FL without SL (!SL∩FL, n = 203), and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 8%
Japan 1 3%
Denmark 1 3%
Unknown 33 87%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 24%
Student > Master 7 18%
Student > Ph. D. Student 7 18%
Other 2 5%
Student > Doctoral Student 2 5%
Other 4 11%
Unknown 7 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 26%
Neuroscience 10 26%
Engineering 5 13%
Sports and Recreations 2 5%
Computer Science 2 5%
Other 3 8%
Unknown 6 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2013.
All research outputs
#12,755,769
of 22,703,044 outputs
Outputs from Frontiers in Computational Neuroscience
#470
of 1,336 outputs
Outputs of similar age
#151,534
of 280,707 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#40
of 131 outputs
Altmetric has tracked 22,703,044 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,336 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.