↓ Skip to main content

A hexapod walker using a heterarchical architecture for action selection

Overview of attention for article published in Frontiers in Computational Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
1 X user
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A hexapod walker using a heterarchical architecture for action selection
Published in
Frontiers in Computational Neuroscience, January 2013
DOI 10.3389/fncom.2013.00126
Pubmed ID
Authors

Malte Schilling, Jan Paskarbeit, Thierry Hoinville, Arne Hüffmeier, Axel Schneider, Josef Schmitz, Holk Cruse

Abstract

Moving in a cluttered environment with a six-legged walking machine that has additional body actuators, therefore controlling 22 DoFs, is not a trivial task. Already simple forward walking on a flat plane requires the system to select between different internal states. The orchestration of these states depends on walking velocity and on external disturbances. Such disturbances occur continuously, for example due to irregular up-and-down movements of the body or slipping of the legs, even on flat surfaces, in particular when negotiating tight curves. The number of possible states is further increased when the system is allowed to walk backward or when front legs are used as grippers and cannot contribute to walking. Further states are necessary for expansion that allow for navigation. Here we demonstrate a solution for the selection and sequencing of different (attractor) states required to control different behaviors as are forward walking at different speeds, backward walking, as well as negotiation of tight curves. This selection is made by a recurrent neural network (RNN) of motivation units, controlling a bank of decentralized memory elements in combination with the feedback through the environment. The underlying heterarchical architecture of the network allows to select various combinations of these elements. This modular approach representing an example of neural reuse of a limited number of procedures allows for adaptation to different internal and external conditions. A way is sketched as to how this approach may be expanded to form a cognitive system being able to plan ahead. This architecture is characterized by different types of modules being arranged in layers and columns, but the complete network can also be considered as a holistic system showing emergent properties which cannot be attributed to a specific module.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 5%
Switzerland 1 3%
Unknown 37 93%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 28%
Student > Ph. D. Student 6 15%
Researcher 5 13%
Student > Bachelor 3 8%
Lecturer 2 5%
Other 4 10%
Unknown 9 23%
Readers by discipline Count As %
Engineering 12 30%
Computer Science 4 10%
Neuroscience 3 8%
Agricultural and Biological Sciences 2 5%
Psychology 2 5%
Other 5 13%
Unknown 12 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2022.
All research outputs
#7,295,054
of 23,009,818 outputs
Outputs from Frontiers in Computational Neuroscience
#396
of 1,354 outputs
Outputs of similar age
#80,974
of 282,174 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#31
of 131 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,354 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,174 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.