↓ Skip to main content

A circular model for song motor control in Serinus canaria

Overview of attention for article published in Frontiers in Computational Neuroscience, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A circular model for song motor control in Serinus canaria
Published in
Frontiers in Computational Neuroscience, April 2015
DOI 10.3389/fncom.2015.00041
Pubmed ID
Authors

Rodrigo G. Alonso, Marcos A. Trevisan, Ana Amador, Franz Goller, Gabriel B. Mindlin

Abstract

Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Portugal 1 2%
Denmark 1 2%
Unknown 43 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 26%
Student > Master 8 17%
Researcher 8 17%
Student > Bachelor 3 7%
Professor 3 7%
Other 4 9%
Unknown 8 17%
Readers by discipline Count As %
Neuroscience 15 33%
Agricultural and Biological Sciences 7 15%
Physics and Astronomy 4 9%
Biochemistry, Genetics and Molecular Biology 2 4%
Environmental Science 2 4%
Other 8 17%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2015.
All research outputs
#14,812,046
of 22,805,349 outputs
Outputs from Frontiers in Computational Neuroscience
#766
of 1,342 outputs
Outputs of similar age
#148,920
of 264,831 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#13
of 23 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,831 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.