↓ Skip to main content

Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment

Overview of attention for article published in Frontiers in Computational Neuroscience, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment
Published in
Frontiers in Computational Neuroscience, November 2016
DOI 10.3389/fncom.2016.00117
Pubmed ID
Authors

Hanin H. Alahmadi, Yuan Shen, Shereen Fouad, Caroline Di B. Luft, Peter Bentham, Zoe Kourtzi, Peter Tino

Abstract

Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 16%
Student > Ph. D. Student 9 12%
Student > Bachelor 7 9%
Student > Master 6 8%
Professor 4 5%
Other 13 17%
Unknown 24 32%
Readers by discipline Count As %
Psychology 12 16%
Neuroscience 10 13%
Medicine and Dentistry 7 9%
Computer Science 6 8%
Engineering 4 5%
Other 10 13%
Unknown 26 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2016.
All research outputs
#3,080,583
of 22,901,818 outputs
Outputs from Frontiers in Computational Neuroscience
#144
of 1,347 outputs
Outputs of similar age
#63,286
of 417,510 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#2
of 38 outputs
Altmetric has tracked 22,901,818 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,347 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 417,510 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.