↓ Skip to main content

CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation

Overview of attention for article published in Frontiers in Computational Neuroscience, February 2017
Altmetric Badge

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
61 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Published in
Frontiers in Computational Neuroscience, February 2017
DOI 10.3389/fncom.2017.00005
Pubmed ID
Authors

Marko Wilke, Mekibib Altaye, Scott K. Holland, The CMIND Authorship Consortium

Abstract

Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Researcher 13 19%
Student > Bachelor 6 9%
Student > Master 6 9%
Student > Doctoral Student 5 7%
Other 11 16%
Unknown 15 22%
Readers by discipline Count As %
Neuroscience 18 26%
Psychology 9 13%
Medicine and Dentistry 5 7%
Computer Science 3 4%
Agricultural and Biological Sciences 3 4%
Other 6 9%
Unknown 25 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2019.
All research outputs
#15,694,282
of 23,321,213 outputs
Outputs from Frontiers in Computational Neuroscience
#886
of 1,372 outputs
Outputs of similar age
#198,593
of 311,922 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#17
of 23 outputs
Altmetric has tracked 23,321,213 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,372 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,922 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.