↓ Skip to main content

Optimal Control Based Stiffness Identification of an Ankle-Foot Orthosis Using a Predictive Walking Model

Overview of attention for article published in Frontiers in Computational Neuroscience, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Optimal Control Based Stiffness Identification of an Ankle-Foot Orthosis Using a Predictive Walking Model
Published in
Frontiers in Computational Neuroscience, April 2017
DOI 10.3389/fncom.2017.00023
Pubmed ID
Authors

Manish Sreenivasa, Matthew Millard, Martin Felis, Katja Mombaur, Sebastian I. Wolf

Abstract

Predicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort. Our simulations include the computation of foot-ground reaction forces, as well as the neuromuscular dynamics using computationally efficient muscle torque generators and excitation-activation equations. The optimal control problem (OCP) is solved with a direct multiple shooting method. The solution of this problem is physically consistent synthetic neural excitation commands, muscle activations and whole body motion. Our simulations produced similar changes to the gait characteristics as those recorded on the patient. The orthosis-equipped model was able to walk faster with more extended knees. Notably, our approach can be easily tuned to simulate weakened muscles, produces physiologically realistic ground reaction forces and smooth muscle activations and torques, and can be implemented on a standard workstation to produce results within a few hours. These results are an important contribution toward bridging the gap between research methods in computational neuromechanics and day-to-day clinical rehabilitation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 90 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 32%
Researcher 12 13%
Student > Master 11 12%
Student > Bachelor 6 7%
Other 4 4%
Other 13 14%
Unknown 16 18%
Readers by discipline Count As %
Engineering 42 46%
Nursing and Health Professions 5 5%
Sports and Recreations 4 4%
Medicine and Dentistry 4 4%
Biochemistry, Genetics and Molecular Biology 3 3%
Other 8 9%
Unknown 25 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2017.
All research outputs
#14,277,571
of 22,963,381 outputs
Outputs from Frontiers in Computational Neuroscience
#682
of 1,347 outputs
Outputs of similar age
#172,362
of 310,038 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#21
of 30 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,347 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.