↓ Skip to main content

Empirical Evaluation of Voluntarily Activatable Muscle Synergies

Overview of attention for article published in Frontiers in Computational Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Empirical Evaluation of Voluntarily Activatable Muscle Synergies
Published in
Frontiers in Computational Neuroscience, September 2017
DOI 10.3389/fncom.2017.00082
Pubmed ID
Authors

Shunta Togo, Hiroshi Imamizu

Abstract

The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factorization (NMF), the standard mathematical method for synergy extraction. We defined the activation of a single muscle synergy as the generation of a muscle activity pattern vector parallel to the single muscle synergy vector. Subjects performed an isometric force production task with their right hand, and the 13 muscle activity patterns associated with their elbow and shoulder movements were measured. We extracted muscle synergies during the task using electromyogram (EMG) data and the NMF method with varied numbers of muscle synergies. The number (N) of muscle synergies was determined by using the variability accounted for (VAF, NVAF ) and the coefficient of determination (CD, NCD ). An additional muscle synergy model with NAD was also considered. We defined a conventional muscle synergy as the muscle synergy extracted by the NVAF , NCD , and NAD . We also defined an extended muscle synergy as the muscle synergy extracted by the NEX > NAD . To examine whether the individual muscle synergy was voluntarily activatable or not, we calculated the index of independent activation, which reflects similarities between a selected single muscle synergy and the current muscle activation pattern of the subject. Subjects were visually feed-backed the index of independent activation, then instructed to generate muscle activity patterns similar to the conventional and extended muscle synergies. As a result, an average of 90.8% of the muscle synergy extracted by the NVAF was independently activated. However, the proportion of activatable muscle synergies extracted by NCD and NAD was lower. These results partly support the assumption of the muscle synergy hypothesis, i.e., that the conventional method can extract voluntarily and independently activatable muscle synergies by using the appropriate index of reconstruction. Moreover, an average of 25.5% of the extended muscle synergy was significantly activatable. This result suggests that the CNS can use extended muscle synergies to perform voluntary movements.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Researcher 5 16%
Professor 4 13%
Student > Doctoral Student 3 9%
Student > Bachelor 3 9%
Other 2 6%
Unknown 8 25%
Readers by discipline Count As %
Engineering 8 25%
Neuroscience 7 22%
Nursing and Health Professions 2 6%
Medicine and Dentistry 2 6%
Sports and Recreations 1 3%
Other 2 6%
Unknown 10 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 December 2017.
All research outputs
#13,569,135
of 23,001,641 outputs
Outputs from Frontiers in Computational Neuroscience
#575
of 1,353 outputs
Outputs of similar age
#159,772
of 315,600 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#21
of 30 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,353 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,600 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.