↓ Skip to main content

A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation

Overview of attention for article published in Frontiers in Computational Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation
Published in
Frontiers in Computational Neuroscience, October 2017
DOI 10.3389/fncom.2017.00094
Pubmed ID
Authors

Peihua Feng, Ying Wu, Jiazhong Zhang

Abstract

Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 38%
Student > Ph. D. Student 2 25%
Other 1 13%
Student > Master 1 13%
Professor > Associate Professor 1 13%
Other 0 0%
Readers by discipline Count As %
Engineering 3 38%
Energy 2 25%
Neuroscience 1 13%
Physics and Astronomy 1 13%
Unknown 1 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2017.
All research outputs
#18,573,839
of 23,005,189 outputs
Outputs from Frontiers in Computational Neuroscience
#1,056
of 1,353 outputs
Outputs of similar age
#250,285
of 326,542 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#28
of 31 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,353 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,542 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.