↓ Skip to main content

Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model

Overview of attention for article published in Frontiers in Computational Neuroscience, June 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
17 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model
Published in
Frontiers in Computational Neuroscience, June 2018
DOI 10.3389/fncom.2018.00038
Pubmed ID
Authors

Emanuele Olivetti, Danilo Benozzo, Jan Bím, Stefano Panzeri, Paolo Avesani

Abstract

Effective connectivity measures the pattern of causal interactions between brain regions. Traditionally, these patterns of causality are inferred from brain recordings using either non-parametric, i.e., model-free, or parametric, i.e., model-based, approaches. The latter approaches, when based on biophysically plausible models, have the advantage that they may facilitate the interpretation of causality in terms of underlying neural mechanisms. Recent biophysically plausible neural network models of recurrent microcircuits have shown the ability to reproduce well the characteristics of real neural activity and can be applied to model interacting cortical circuits. Unfortunately, however, it is challenging to invert these models in order to estimate effective connectivity from observed data. Here, we propose to use a classification-based method to approximate the result of such complex model inversion. The classifier predicts the pattern of causal interactions given a multivariate timeseries as input. The classifier is trained on a large number of pairs of multivariate timeseries and the respective pattern of causal interactions, which are generated by simulation from the neural network model. In simulated experiments, we show that the proposed method is much more accurate in detecting the causal structure of timeseries than current best practice methods. Additionally, we present further results to characterize the validity of the neural network model and the ability of the classifier to adapt to the generative model of the data.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 35%
Student > Doctoral Student 2 12%
Student > Ph. D. Student 2 12%
Student > Bachelor 1 6%
Student > Master 1 6%
Other 1 6%
Unknown 4 24%
Readers by discipline Count As %
Engineering 3 18%
Neuroscience 3 18%
Agricultural and Biological Sciences 1 6%
Psychology 1 6%
Social Sciences 1 6%
Other 3 18%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2018.
All research outputs
#15,512,676
of 23,054,359 outputs
Outputs from Frontiers in Computational Neuroscience
#872
of 1,355 outputs
Outputs of similar age
#209,706
of 329,695 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#25
of 30 outputs
Altmetric has tracked 23,054,359 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,355 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,695 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.