↓ Skip to main content

Hyperphosphorylation-Induced Tau Oligomers

Overview of attention for article published in Frontiers in Neurology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
88 Dimensions

Readers on

mendeley
153 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hyperphosphorylation-Induced Tau Oligomers
Published in
Frontiers in Neurology, January 2013
DOI 10.3389/fneur.2013.00112
Pubmed ID
Authors

Khalid Iqbal, Cheng-Xin Gong, Fei Liu

Abstract

In normal adult brain the microtubule associated protein (MAP) tau contains 2-3 phosphates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic protein. The normal brain tau interacts with tubulin and promotes its assembly into microtubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold hyperphosphorylated. The abnormally hyperphosphorylated tau binds to normal tau instead of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers can be sedimented at 200,000 × g whereas the normal tau under these conditions remains in the supernatant. The abnormally hyperphosphorylated tau is capable of sequestering not only normal tau but also MAP MAP1 and MAP2 and causing disruption of the microtubule network promoted by these proteins. Unlike Aβ and prion protein (PrP) oligomers, tau oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A) inhibits and rehyperphosphorylation of the PP2A-AD P-tau with more than one combination of tau protein kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau readily self-assembles into paired helical filaments. Missense tau mutations found in frontotemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of tau that alters the 1:1 ratio of the 3-repeat: 4-repeat taus such as in Down syndrome, Pick disease, and progressive supranuclear palsy leads to the abnormal hyperphosphorylation of tau.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 153 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
India 1 <1%
Italy 1 <1%
Unknown 149 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 29 19%
Student > Ph. D. Student 26 17%
Student > Master 20 13%
Student > Bachelor 19 12%
Student > Doctoral Student 12 8%
Other 20 13%
Unknown 27 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 24%
Biochemistry, Genetics and Molecular Biology 27 18%
Neuroscience 16 10%
Medicine and Dentistry 12 8%
Chemistry 12 8%
Other 14 9%
Unknown 35 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2013.
All research outputs
#20,198,525
of 22,716,996 outputs
Outputs from Frontiers in Neurology
#8,635
of 11,624 outputs
Outputs of similar age
#248,774
of 280,757 outputs
Outputs of similar age from Frontiers in Neurology
#117
of 210 outputs
Altmetric has tracked 22,716,996 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,624 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,757 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.