↓ Skip to main content

Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review

Overview of attention for article published in Frontiers in Neurology, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
8 X users
facebook
2 Facebook pages

Readers on

mendeley
191 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review
Published in
Frontiers in Neurology, February 2017
DOI 10.3389/fneur.2017.00029
Pubmed ID
Authors

Stephanie Lefebvre, Sook-Lei Liew

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain-behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 191 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 191 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 36 19%
Student > Master 23 12%
Researcher 22 12%
Student > Bachelor 19 10%
Student > Doctoral Student 13 7%
Other 25 13%
Unknown 53 28%
Readers by discipline Count As %
Neuroscience 34 18%
Medicine and Dentistry 30 16%
Nursing and Health Professions 15 8%
Psychology 13 7%
Engineering 8 4%
Other 25 13%
Unknown 66 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2017.
All research outputs
#4,699,471
of 22,953,506 outputs
Outputs from Frontiers in Neurology
#3,772
of 11,843 outputs
Outputs of similar age
#98,524
of 420,399 outputs
Outputs of similar age from Frontiers in Neurology
#31
of 113 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,843 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,399 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.