↓ Skip to main content

Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease

Overview of attention for article published in Frontiers in Neurology, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease
Published in
Frontiers in Neurology, November 2017
DOI 10.3389/fneur.2017.00607
Pubmed ID
Authors

Andreas Kuhner, Tobias Schubert, Massimo Cenciarini, Isabella Katharina Wiesmeier, Volker Arnd Coenen, Wolfram Burgard, Cornelius Weiller, Christoph Maurer

Abstract

Objective assessments of Parkinson's disease (PD) patients' motor state using motion capture techniques are still rarely used in clinical practice, even though they may improve clinical management. One major obstacle relates to the large dimensionality of motor abnormalities in PD. We aimed to extract global motor performance measures covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep brain stimulation (DBS) of the subthalamic nucleus. We followed a data-driven, machine-learning approach and propose performance measures that employ Random Forests with probability distributions. We applied this method to 14 PD patients with DBS switched-off or -on, and 26 healthy control subjects performing the Timed Up and Go Test (TUG), the Functional Reach Test (FRT), a hand coordination task, walking 10-m straight, and a 90° curve. For each motor task, a Random Forest identified a specific set of metrics that optimally separated PD off DBS from healthy subjects. We noted the highest accuracy (94.6%) for standing up. This corresponded to a sensitivity of 91.5% to detect a PD patient off DBS, and a specificity of 97.2% representing the rate of correctly identified healthy subjects. We then calculated performance measures based on these sets of metrics and applied those results to characterize symptom severity in different motor tasks. Task-specific symptom severity measures correlated significantly with each other and with the Unified Parkinson's Disease Rating Scale (UPDRS, part III, correlation of r2 = 0.79). Agreement rates between different measures ranged from 79.8 to 89.3%. The close correlation of PD patients' various motor abnormalities quantified by different, task-specific severity measures suggests that these abnormalities are only facets of the underlying one-dimensional severity of motor deficits. The identification and characterization of this underlying motor deficit may help to optimize therapeutic interventions, e.g., to "automatically" adapt DBS settings in PD patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 17%
Researcher 11 13%
Student > Bachelor 11 13%
Student > Master 10 12%
Other 5 6%
Other 11 13%
Unknown 20 24%
Readers by discipline Count As %
Engineering 13 16%
Neuroscience 8 10%
Computer Science 8 10%
Nursing and Health Professions 7 9%
Medicine and Dentistry 7 9%
Other 14 17%
Unknown 25 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2017.
All research outputs
#14,084,634
of 23,007,887 outputs
Outputs from Frontiers in Neurology
#5,511
of 11,904 outputs
Outputs of similar age
#173,872
of 325,276 outputs
Outputs of similar age from Frontiers in Neurology
#76
of 187 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,904 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,276 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 187 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.