↓ Skip to main content

External Validity of Randomized Controlled Trials on Alzheimer’s Disease: The Biases of Frailty and Biological Aging

Overview of attention for article published in Frontiers in Neurology, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
External Validity of Randomized Controlled Trials on Alzheimer’s Disease: The Biases of Frailty and Biological Aging
Published in
Frontiers in Neurology, November 2017
DOI 10.3389/fneur.2017.00628
Pubmed ID
Authors

Marco Canevelli, Alessandro Trebbastoni, Federica Quarata, Fabrizia D’Antonio, Matteo Cesari, Carlo de Lena, Giuseppe Bruno

Abstract

To date, the external validity of randomized controlled trials (RCTs) on Alzheimer's disease (AD) has been assessed only considering monodimensional variables. Nevertheless, looking at isolated and single characteristics cannot guarantee a sufficient level of appreciation of the AD patients' complexity. The only way to understand whether the two worlds (i.e., research and clinics) deal with the same type of patients is to adopt multidimensional approaches more holistically reflecting the biological age of the individual. In the present study, we compared measures of frailty/biological aging [assessed by a Frailty Index (FI)] of a sample of patients with AD resulted eligible and subsequently included in phase III RCTs compared to patients referring to the same clinical service, but not considered for inclusion. The "RCT sample" and the "real world sample" were found to be statistically similar for all the considered sociodemographic and clinical variables. Nevertheless, the "real world sample" was found to be significantly frailer compared to the "RCT sample," as indicated by higher FI scores [0.28 (SD 0.1) vs. 0.17 (SD 0.1); p < 0.001, respectively]. Moreover, when assessing the relationship between FI and age, we found that the correlation was almost null in the "RCT sample" (Spearman's r = 0.01; p = 0.98), while it was statistically significant in the "real world sample" (r = 0.49; p = 0.02). The application of too rigid designs may result in the poor representativeness of RCT samples. It may even imply the study of a condition biologically different from that observed in the "real world." The adoption of multidimensional measures capable to capture the individual's biological age may facilitate evaluating the external validity of clinical studies, implicitly improving the interpretation of the results and their translation in the clinical arena.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 16%
Student > Bachelor 4 13%
Student > Master 4 13%
Lecturer 3 9%
Student > Doctoral Student 2 6%
Other 6 19%
Unknown 8 25%
Readers by discipline Count As %
Medicine and Dentistry 12 38%
Computer Science 2 6%
Neuroscience 2 6%
Mathematics 1 3%
Nursing and Health Professions 1 3%
Other 5 16%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2017.
All research outputs
#18,019,927
of 26,369,011 outputs
Outputs from Frontiers in Neurology
#8,081
of 14,987 outputs
Outputs of similar age
#286,573
of 452,622 outputs
Outputs of similar age from Frontiers in Neurology
#101
of 189 outputs
Altmetric has tracked 26,369,011 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,987 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 452,622 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 189 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.