↓ Skip to main content

Clinical and Phenomenological Characteristics of Patients with Task-Specific Lingual Dystonia: Possible Association with Occupation

Overview of attention for article published in Frontiers in Neurology, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Clinical and Phenomenological Characteristics of Patients with Task-Specific Lingual Dystonia: Possible Association with Occupation
Published in
Frontiers in Neurology, December 2017
DOI 10.3389/fneur.2017.00649
Pubmed ID
Authors

Kazuya Yoshida

Abstract

Lingual dystonia is a subtype of oromandibular dystonia, which is a movement disorder characterized by involuntary sustained or intermittent contraction of the masticatory and/or tongue muscles. Lingual dystonia interferes with important daily activities, such as speaking, chewing, and swallowing, resulting in vocational and social disability. The aim of this study was to investigate a possible relationship between occupation and the development of lingual dystonia. Phenomenological and clinical characteristics of 95 patients [53 females (55.8%) and 42 males (44.2%), mean age 48.0 years] with task-specific, speech-induced lingual dystonia were analyzed. Structured interviews were carried out to obtain information regarding primary occupation, including overtime work and stress during work. The factors that might have influenced the development of lingual dystonia were estimated using multivariate logistic regression analysis of the 95 patients with lingual dystonia and 95 controls [68 females (71.6%) and 27 males (28.4%), mean age 47.2 years] with temporomandibular disorders. Overall, 84.2% of the patients had regular occupations; 73.8% of the patients with regular occupations reported working overtime more than twice a week, and 63.8% of them experienced stress at the workplace. Furthermore, 82.1% of the patients had engaged in occupations that required them to talk to customers or other people under stressful situations over prolonged periods of time for many years (mean: 15.6 years). The most common occupation was sales representative (17.9%), followed by telephone operator (13.7%), customer service representative (10.5%), health care worker (9.5%), waiter or waitress (5.3%), receptionist (5.3%), and cashier (5.3%). Twenty-nine patients (30.5%) had tardive lingual dystonia. Logistic regression analyses revealed that frequent requirements for professional speaking (p = 0.011, odds ratio: 5.66), high stress during work (p = 0.043, odds ratio: 5.4), and neuroleptic use (p = 0.032, odds ratio: 2.52) were significant contributors to the manifestation of lingual dystonia. Professions in which conversations in stressful situations are unavoidable may trigger lingual dystonia. Therefore, speech-induced lingual dystonia can be regarded as occupational dystonia in certain cases.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 18%
Student > Doctoral Student 4 10%
Student > Postgraduate 4 10%
Other 3 8%
Researcher 3 8%
Other 8 21%
Unknown 10 26%
Readers by discipline Count As %
Medicine and Dentistry 12 31%
Neuroscience 5 13%
Biochemistry, Genetics and Molecular Biology 2 5%
Engineering 2 5%
Social Sciences 1 3%
Other 3 8%
Unknown 14 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2017.
All research outputs
#20,454,971
of 23,011,300 outputs
Outputs from Frontiers in Neurology
#8,929
of 11,905 outputs
Outputs of similar age
#375,214
of 439,919 outputs
Outputs of similar age from Frontiers in Neurology
#144
of 204 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,905 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,919 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 204 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.