↓ Skip to main content

Effects of Optokinetic Stimulation on Verticality Perception Are Much Larger for Vision-Based Paradigms Than for Vision-Independent Paradigms

Overview of attention for article published in Frontiers in Neurology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Optokinetic Stimulation on Verticality Perception Are Much Larger for Vision-Based Paradigms Than for Vision-Independent Paradigms
Published in
Frontiers in Neurology, May 2018
DOI 10.3389/fneur.2018.00323
Pubmed ID
Authors

Katja M. Dockheer, Christopher J. Bockisch, Alexander A. Tarnutzer

Abstract

Verticality perception as assessed by the subjective visual vertical (SVV) is significantly biased by a rotating optokinetic stimulus. The underlying mechanisms of this effect remain open. Potentially, the optokinetic stimulus induces a shift of the internal estimate of the direction of gravity. This hypothesis predicts a shift of perceived vertical using other, non-vision dependent, paradigms as well. Alternatively, an optokinetic stimulus may only induce a shift of visual orientation, and so would be task specific. To test this prediction, both vision-dependent SVV and vision-independent [subjective haptic vertical (SHV)] paradigms were applied. In 12 healthy human subjects, perceived vertical was measured in different whole-body roll positions (up to ±120°, steps = 30°) while watching a clockwise or counterclockwise rotating optokinetic stimulus. For comparison, baseline trials were collected in darkness. A generalized linear model was applied for statistical analysis. A significant main effect for optokinetic stimulation was noted both for the SVV paradigm (p < 0.001) and the SHV paradigm (p = 0.013). However, while pairwise comparisons demonstrated significant optokinetic-induced shifts (p ≤ 0.035) compared to baseline in all roll-tilted orientations except 30° and 60° left-ear-down position and counterclockwise optokinetic stimulation for the SVV paradigm, significant shifts were found in only 1 of the 18 test conditions (120° left-ear-down roll orientation, counterclockwise optokinetic stimulation) for the SHV paradigm. Compared to the SHV, the SVV showed significantly (p < 0.001) larger shifts of perceived vertical when presenting a clockwise (15.3 ± 16.0° vs. 1.1 ± 5.2°, mean ± 1 SD) or counterclockwise (-12.6 ± 7.7° vs. -2.6 ± 5.4°) rotating optokinetic stimulus. Comparing the effect of optokinetic stimulation on verticality perception in both vision-dependent and vision-independent paradigms, we demonstrated distinct patterns. While significant large and roll-angle dependent shifts were noted for the SVV, offsets were minor and reached significance only in one test condition for the SHV. These results suggest that optokinetic stimulation predominately affects vision-related mechanisms, possibly due to induced torsional eye displacements, and that any shifts of the internal estimate of the direction of gravity are relatively minor.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 18%
Researcher 3 18%
Student > Doctoral Student 2 12%
Student > Master 2 12%
Professor 1 6%
Other 2 12%
Unknown 4 24%
Readers by discipline Count As %
Neuroscience 4 24%
Medicine and Dentistry 4 24%
Psychology 2 12%
Unspecified 1 6%
Nursing and Health Professions 1 6%
Other 2 12%
Unknown 3 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2018.
All research outputs
#17,948,821
of 23,047,237 outputs
Outputs from Frontiers in Neurology
#7,168
of 11,952 outputs
Outputs of similar age
#237,365
of 327,423 outputs
Outputs of similar age from Frontiers in Neurology
#187
of 287 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,952 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,423 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 287 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.