↓ Skip to main content

Adaptations to Postural Perturbations in Patients With Freezing of Gait

Overview of attention for article published in Frontiers in Neurology, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
92 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adaptations to Postural Perturbations in Patients With Freezing of Gait
Published in
Frontiers in Neurology, July 2018
DOI 10.3389/fneur.2018.00540
Pubmed ID
Authors

Esther M. J. Bekkers, Sam Van Rossom, Elke Heremans, Kim Dockx, Surendar Devan, Sabine M. P. Verschueren, Alice Nieuwboer

Abstract

Introduction: Freezing of gait (FOG) is a powerful determinant of falls in Parkinson's disease (PD). Automatic postural reactions serve as a protective strategy to prevent falling after perturbations. However, differences in automatic postural reactions between patients with and without FOG in response to perturbation are at present unclear. Therefore, the present study aimed to compare the response patterns and neuromuscular control between PD patients with and without FOG and healthy controls (HCs) after postural perturbations. Methods: 28 PD patients (15 FOG+, 13 FOG-) and 22 HCs were included. Participants stood on a moveable platform while random perturbations were imposed. The first anterior platform translation was retained for analysis. Center of pressure (CoP) and center of mass (CoM) trajectories and trunk, knee and ankle angles were compared between the three groups using the Statistical Parametric Mapping technique, allowing to capture changes in time. In addition, muscle activation of lower leg muscles was measured using EMG. Results: At baseline, FOG+ stood with more trunk flexion than HCs (p = 0.005), a result not found in FOG-. Following a perturbation, FOG+ reacted with increased trunk extension (p = 0.004) in comparison to HCs, a pattern not observed in FOG-. The CoM showed greater backward displacement in FOG- and FOG+ (p = 0.008, p = 0.027). Both FOG+ and FOG- showed increased co-activation of agonist and antagonist muscles compared to HCs (p = 0.010), with no differences between FOG+ and FOG-. Conclusions: Automatic postural reactions after a sudden perturbation are similar between PD subgroups with and without FOG but different from HCs. Reactive postural control, largely regulated by brain stem centers, seems to be modulated by different mechanisms than those governing freezing of gait. Greater differences in initial stance position, enhanced by joint stiffening, could however underlie maladaptive postural responses and increase susceptibility for balance loss in FOG+ compared to FOG-.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 92 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 22 24%
Researcher 10 11%
Student > Bachelor 10 11%
Student > Ph. D. Student 10 11%
Other 6 7%
Other 12 13%
Unknown 22 24%
Readers by discipline Count As %
Nursing and Health Professions 18 20%
Medicine and Dentistry 11 12%
Neuroscience 8 9%
Engineering 8 9%
Sports and Recreations 6 7%
Other 7 8%
Unknown 34 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2019.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from Frontiers in Neurology
#9,014
of 12,012 outputs
Outputs of similar age
#260,121
of 296,625 outputs
Outputs of similar age from Frontiers in Neurology
#249
of 321 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,012 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,625 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 321 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.