↓ Skip to main content

Brainstem Raphe Alterations in TCS: A Biomarker for Depression and Apathy in Parkinson's Disease Patients

Overview of attention for article published in Frontiers in Neurology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Brainstem Raphe Alterations in TCS: A Biomarker for Depression and Apathy in Parkinson's Disease Patients
Published in
Frontiers in Neurology, August 2018
DOI 10.3389/fneur.2018.00645
Pubmed ID
Authors

Daniel Richter, Dirk Woitalla, Siegfried Muhlack, Ralf Gold, Lars Tönges, Christos Krogias

Abstract

Depression and apathy can both be present in patients with Parkinson's disease (PD) while e. g., essential tremor (ET) patients mostly only report depressive symptoms. In PD, depression has been linked with brainstem raphe (BR) signal alterations in transcranial sonography (TCS) but apathy has not been evaluated in such terms as a putative biomarker. Furthermore, the BR has only been investigated using a singular axial TCS examination plane, although coronal TCS examination allows a much more accurate evaluation of the craniocaudal formation of serotonergic raphe structures in the midbrain area. The objective of this study was to investigate the value of coronal TCS examination for the detection of BR signal alterations and clinically correlate it to apathy in patients with PD, ET and healthy controls (HC). We prospectively included PD patients (n = 31), ET patients (n = 16), and HC (n = 16). All were examined by TCS in the axial and coronal plane with focus on BR signal alterations. LARS and BDI-II scores were conducted to assess apathic and depressive symptoms in the study population. In a detailed analysis we found that the correlation of coronal and axial TCS alterations of BR was very high (rho = 0.950, p < 0.001). BR signal alterations were more frequent in PD patients than in ET patients and HC, while it was not different between ET patients and HC. In the PD patient group, BDI-II and LARS scores were negatively correlated to BR signal changes in TCS in a significant manner (BDI-II and axial BR: p = 0.019; BDI-II and coronal BR: p = 0.011; LARS and axial BR: p = 0.017; LARS and coronal BR: p = 0.023). Together in this brainstem ultrasound study we find a significant association of BR signal alterations with clinically evident apathy and depression in patients with PD. Therefore, TCS might enable the identification of a subgroup of PD patients which are at higher risk to suffer from or to develop depression or apathy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Bachelor 4 15%
Researcher 3 12%
Student > Postgraduate 2 8%
Student > Master 1 4%
Other 1 4%
Unknown 10 38%
Readers by discipline Count As %
Medicine and Dentistry 5 19%
Neuroscience 5 19%
Engineering 2 8%
Psychology 2 8%
Social Sciences 1 4%
Other 1 4%
Unknown 10 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2021.
All research outputs
#15,016,514
of 23,099,576 outputs
Outputs from Frontiers in Neurology
#6,206
of 12,015 outputs
Outputs of similar age
#198,509
of 330,798 outputs
Outputs of similar age from Frontiers in Neurology
#143
of 310 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,015 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,798 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 310 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.