↓ Skip to main content

Use of a Modified STROOP Test to Assess Color Discrimination Deficit in Parkinson's Disease

Overview of attention for article published in Frontiers in Neurology, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Use of a Modified STROOP Test to Assess Color Discrimination Deficit in Parkinson's Disease
Published in
Frontiers in Neurology, September 2018
DOI 10.3389/fneur.2018.00765
Pubmed ID
Authors

Rebekah G. Langston, Tuhin Virmani

Abstract

Objective: To objectively measure color vision dysfunction in idiopathic Parkinson's disease (iPD) using an easily administered, essentially free, modified Stroop test. Methods: Sixty-one iPD patients and 26 age-matched controls (HC) were enrolled after IRB approval and performed congruent (CST) and incongruent (IST) modified Stroop tests consisting of 40 words in 10 colors arranged in a 5 x 8 grid. The scorer was blinded to participant diagnosis. Errors on IST were defined as type 1 (written word reported rather than color) or type 2 (color reported different from the written word or its color). Results: The iPD group and the control group completed testing with similar CST performance. On the IST, 75.4% of iPD patients had type 2 errors (p = 0.001, OR 4.907, 95%CI 1.838-13.097) compared to 38.5% HC, with a positive predictive value of 82%. The mean number of type 2 errors was also higher in the iPD group, even with MoCA scores as a covariate in the analysis. Type 1 errors were not significantly different between the groups. A univariate logistic regression model with age, gender, MoCA, normalized IST completion time and the presence/absence of type 2 errors also resulted in type 2 errors as the only significant factor in the equation (p = 0.026). Conclusions: The modified Stroop test incorporated into the clinical evaluation of a patient may provide a quick and inexpensive objective measure of a non-motor feature of iPD, which could help in the clinical diagnosis of iPD in conjunction with the motor assessments currently used by neurologists.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Student > Ph. D. Student 2 8%
Lecturer 2 8%
Other 2 8%
Researcher 2 8%
Other 7 28%
Unknown 6 24%
Readers by discipline Count As %
Psychology 3 12%
Neuroscience 3 12%
Medicine and Dentistry 3 12%
Immunology and Microbiology 1 4%
Economics, Econometrics and Finance 1 4%
Other 5 20%
Unknown 9 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2018.
All research outputs
#20,533,292
of 23,103,436 outputs
Outputs from Frontiers in Neurology
#9,029
of 12,015 outputs
Outputs of similar age
#293,993
of 337,668 outputs
Outputs of similar age from Frontiers in Neurology
#211
of 294 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,015 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,668 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 294 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.