↓ Skip to main content

Auditory and motor imagery modulate learning in music performance

Overview of attention for article published in Frontiers in Human Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
11 X users
facebook
1 Facebook page
googleplus
1 Google+ user
reddit
1 Redditor

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
171 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Auditory and motor imagery modulate learning in music performance
Published in
Frontiers in Human Neuroscience, January 2013
DOI 10.3389/fnhum.2013.00320
Pubmed ID
Authors

Rachel M. Brown, Caroline Palmer

Abstract

Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 171 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 1%
France 1 <1%
Germany 1 <1%
Japan 1 <1%
Greece 1 <1%
Unknown 165 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 36 21%
Student > Master 25 15%
Researcher 18 11%
Student > Bachelor 15 9%
Student > Doctoral Student 14 8%
Other 28 16%
Unknown 35 20%
Readers by discipline Count As %
Psychology 47 27%
Arts and Humanities 21 12%
Neuroscience 19 11%
Medicine and Dentistry 11 6%
Sports and Recreations 7 4%
Other 23 13%
Unknown 43 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2013.
All research outputs
#4,504,049
of 25,182,110 outputs
Outputs from Frontiers in Human Neuroscience
#1,956
of 7,638 outputs
Outputs of similar age
#44,927
of 293,942 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#280
of 860 outputs
Altmetric has tracked 25,182,110 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,638 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 293,942 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 860 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.