↓ Skip to main content

Differences between kinematic synergies and muscle synergies during two-digit grasping

Overview of attention for article published in Frontiers in Human Neuroscience, March 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
135 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differences between kinematic synergies and muscle synergies during two-digit grasping
Published in
Frontiers in Human Neuroscience, March 2015
DOI 10.3389/fnhum.2015.00165
Pubmed ID
Authors

Michele Tagliabue, Anna Lisa Ciancio, Thomas Brochier, Selim Eskiizmirliler, Marc A. Maier

Abstract

The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i) Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii) If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as eight surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static) was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i) Kinematic- and muscle-synergies can simultaneously accommodate kinematic (grip type) and kinetic task constraints (load condition). (ii) Upcoming grip and load conditions of the grasp are represented in kinematic- and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii) that the muscle-synergy is linked (correlated, and in phase advance) to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv), pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part) implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part) their origin not just in muscular activation, but in synergistic muscle activation. In short: kinematic synergies may result from muscle synergies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 135 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
France 1 <1%
Canada 1 <1%
Unknown 131 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 36 27%
Student > Master 20 15%
Researcher 14 10%
Student > Doctoral Student 11 8%
Student > Bachelor 9 7%
Other 17 13%
Unknown 28 21%
Readers by discipline Count As %
Engineering 54 40%
Neuroscience 11 8%
Sports and Recreations 10 7%
Agricultural and Biological Sciences 7 5%
Psychology 4 3%
Other 11 8%
Unknown 38 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2017.
All research outputs
#20,400,885
of 22,950,943 outputs
Outputs from Frontiers in Human Neuroscience
#6,556
of 7,178 outputs
Outputs of similar age
#223,466
of 263,815 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#172
of 183 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,178 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,815 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.