↓ Skip to main content

Differing Connectivity of Exner’s Area for Numbers and Letters

Overview of attention for article published in Frontiers in Human Neuroscience, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differing Connectivity of Exner’s Area for Numbers and Letters
Published in
Frontiers in Human Neuroscience, June 2016
DOI 10.3389/fnhum.2016.00281
Pubmed ID
Authors

Elise Klein, Klaus Willmes, Stefanie Jung, Stefan Huber, Lucia W. Braga, Korbinian Moeller

Abstract

There is a growing body of evidence indicating a crucial role of Exner's area in (hand-) writing symbolic codes such as letters and words. However, a recent study reported a patient with a lesion affecting Broca's and Exner's area, who suffered from severe peripheral agraphia for letters but not for Arabic digits. The authors suggested a speculative account postulating differential connectivity of Exner's area for numbers and letters in order to explain this dissociation. In the present study, we evaluated this account, employing atlas-based tractography for the patient's anatomy, deterministic fiber-tracking as well as an automated toolkit to investigate the connectivity of Exner's area in healthy adults. In particular, fiber pathways connecting Exner's area with areas associated with language processing (e.g., the arcuate fascicle, ventral pathways encompassing the external/extreme capsule system) reached the inferior part of Exner's area, while fronto-parietal fibers (e.g., the superior longitudinal fascicle) connected the upper part of Exner's area with the intraparietal sulcus typically involved in number processing. Our results substantiated the differential connectivity account for Exner's area by identifying the neural connections between fiber tracts and cortex areas of interest. Our data strongly suggest that white matter connectivity should be taken into account when investigating the neural underpinnings of impaired and intact human cognition.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 52 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 21%
Student > Ph. D. Student 11 21%
Student > Bachelor 7 13%
Student > Master 6 11%
Student > Doctoral Student 3 6%
Other 6 11%
Unknown 9 17%
Readers by discipline Count As %
Psychology 19 36%
Neuroscience 10 19%
Social Sciences 4 8%
Medicine and Dentistry 3 6%
Agricultural and Biological Sciences 2 4%
Other 5 9%
Unknown 10 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2020.
All research outputs
#14,263,483
of 22,873,031 outputs
Outputs from Frontiers in Human Neuroscience
#4,596
of 7,167 outputs
Outputs of similar age
#187,237
of 326,204 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#135
of 192 outputs
Altmetric has tracked 22,873,031 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,167 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,204 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 192 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.