↓ Skip to main content

An Intelligent Man-Machine Interface—Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300

Overview of attention for article published in Frontiers in Human Neuroscience, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Intelligent Man-Machine Interface—Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300
Published in
Frontiers in Human Neuroscience, June 2016
DOI 10.3389/fnhum.2016.00291
Pubmed ID
Authors

Elsa A. Kirchner, Su K. Kim, Marc Tabie, Hendrik Wöhrle, Michael Maurus, Frank Kirchner

Abstract

Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental overload as well as mental underload.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 78 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 19%
Student > Master 11 14%
Student > Bachelor 10 13%
Researcher 7 9%
Lecturer 2 3%
Other 6 8%
Unknown 28 35%
Readers by discipline Count As %
Engineering 10 13%
Computer Science 9 11%
Psychology 8 10%
Neuroscience 6 8%
Nursing and Health Professions 3 4%
Other 12 15%
Unknown 31 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2020.
All research outputs
#15,049,352
of 26,398,142 outputs
Outputs from Frontiers in Human Neuroscience
#3,812
of 7,826 outputs
Outputs of similar age
#193,106
of 372,205 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#96
of 192 outputs
Altmetric has tracked 26,398,142 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,826 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.3. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 372,205 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 192 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.