↓ Skip to main content

Implicit Timing as the Missing Link between Neurobiological and Self Disorders in Schizophrenia?

Overview of attention for article published in Frontiers in Human Neuroscience, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Implicit Timing as the Missing Link between Neurobiological and Self Disorders in Schizophrenia?
Published in
Frontiers in Human Neuroscience, June 2016
DOI 10.3389/fnhum.2016.00303
Pubmed ID
Authors

Anne Giersch, Laurence Lalanne, Philippe Isope

Abstract

Disorders of consciousness and the self are at the forefront of schizophrenia symptomatology. Patients are impaired in feeling themselves as the authors of their thoughts and actions. In addition, their flow of consciousness is disrupted, and thought fragmentation has been suggested to be involved in the patients' difficulties in feeling as being one unique, unchanging self across time. Both impairments are related to self disorders, and both have been investigated at the experimental level. Here we review evidence that both mechanisms of motor control and the temporal structure of signal processing are impaired in schizophrenia patients. Based on this review, we propose that the sequencing of action and perception plays a key role in the patients' impairments. Furthermore, the millisecond time scale of the disorders, as well as the impaired sequencing, highlights the cooperation between brain networks including the cerebellum, as proposed by Andreasen (1999). We examine this possibility in the light of recent knowledge on the anatomical and physiological properties of the cerebellum, its role in timing, and its involvement in known physiological impairments in patients with schizophrenia, e.g., resting states and brain dynamics. A disruption in communication between networks involving the cerebellum, related to known impairments in dopamine, glutamate and GABA transmission, may help to better explain why patients experience reduced attunement with the external world and possibly with themselves.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 29 31%
Student > Master 18 19%
Student > Doctoral Student 7 8%
Student > Bachelor 7 8%
Student > Ph. D. Student 7 8%
Other 13 14%
Unknown 12 13%
Readers by discipline Count As %
Neuroscience 28 30%
Psychology 25 27%
Agricultural and Biological Sciences 8 9%
Medicine and Dentistry 4 4%
Economics, Econometrics and Finance 2 2%
Other 7 8%
Unknown 19 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2016.
All research outputs
#13,194,913
of 23,262,131 outputs
Outputs from Frontiers in Human Neuroscience
#3,706
of 7,254 outputs
Outputs of similar age
#179,762
of 355,114 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#103
of 193 outputs
Altmetric has tracked 23,262,131 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,254 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,114 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 193 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.