↓ Skip to main content

Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks

Overview of attention for article published in Frontiers in Human Neuroscience, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks
Published in
Frontiers in Human Neuroscience, July 2016
DOI 10.3389/fnhum.2016.00351
Pubmed ID
Authors

Elahe' Yargholi, Gholam-Ali Hossein-Zadeh

Abstract

We are frequently exposed to hand written digits 0-9 in today's modern life. Success in decoding-classification of hand written digits helps us understand the corresponding brain mechanisms and processes and assists seriously in designing more efficient brain-computer interfaces. However, all digits belong to the same semantic category and similarity in appearance of hand written digits makes this decoding-classification a challenging problem. In present study, for the first time, augmented naïve Bayes classifier is used for classification of functional Magnetic Resonance Imaging (fMRI) measurements to decode the hand written digits which took advantage of brain connectivity information in decoding-classification. fMRI was recorded from three healthy participants, with an age range of 25-30. Results in different brain lobes (frontal, occipital, parietal, and temporal) show that utilizing connectivity information significantly improves decoding-classification and capability of different brain lobes in decoding-classification of hand written digits were compared to each other. In addition, in each lobe the most contributing areas and brain connectivities were determined and connectivities with short distances between their endpoints were recognized to be more efficient. Moreover, data driven method was applied to investigate the similarity of brain areas in responding to stimuli and this revealed both similarly active areas and active mechanisms during this experiment. Interesting finding was that during the experiment of watching hand written digits, there were some active networks (visual, working memory, motor, and language processing), but the most relevant one to the task was language processing network according to the voxel selection.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 29%
Researcher 10 17%
Student > Bachelor 7 12%
Student > Master 3 5%
Professor 3 5%
Other 6 10%
Unknown 13 22%
Readers by discipline Count As %
Neuroscience 13 22%
Computer Science 10 17%
Engineering 9 15%
Psychology 6 10%
Medicine and Dentistry 2 3%
Other 5 8%
Unknown 14 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2016.
All research outputs
#14,856,117
of 22,879,161 outputs
Outputs from Frontiers in Human Neuroscience
#4,922
of 7,169 outputs
Outputs of similar age
#216,449
of 354,679 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#128
of 174 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,169 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,679 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 174 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.