↓ Skip to main content

Deficits in Letter-Speech Sound Associations but Intact Visual Conflict Processing in Dyslexia: Results from a Novel ERP-Paradigm

Overview of attention for article published in Frontiers in Human Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
99 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deficits in Letter-Speech Sound Associations but Intact Visual Conflict Processing in Dyslexia: Results from a Novel ERP-Paradigm
Published in
Frontiers in Human Neuroscience, March 2017
DOI 10.3389/fnhum.2017.00116
Pubmed ID
Authors

Sarolta Bakos, Karin Landerl, Jürgen Bartling, Gerd Schulte-Körne, Kristina Moll

Abstract

The reading and spelling deficits characteristic of developmental dyslexia (dyslexia) have been related to problems in phonological processing and in learning associations between letters and speech-sounds. Even when children with dyslexia have learned the letters and their corresponding speech sounds, letter-speech sound associations might still be less automatized compared to children with age-adequate literacy skills. In order to examine automaticity in letter-speech sound associations and to overcome some of the disadvantages associated with the frequently used visual-auditory oddball paradigm, we developed a novel electrophysiological letter-speech sound interference paradigm. This letter-speech sound interference paradigm was applied in a group of 9-year-old children with dyslexia (n = 36) and a group of typically developing (TD) children of similar age (n = 37). Participants had to indicate whether two letters look visually the same. In the incongruent condition (e.g., the letter pair A-a) there was a conflict between the visual information and the automatically activated phonological information; although the visual appearance of the two letters is different, they are both associated with the same speech sound. This conflict resulted in slower response times (RTs) in the incongruent than in the congruent (e.g., the letter pair A-e) condition. Furthermore, in the TD control group, the conflict resulted in fast and strong event-related potential (ERP) effects reflected in less negative N1 amplitudes and more positive conflict slow potentials (cSP) in the incongruent than in the congruent condition. However, the dyslexic group did not show any conflict-related ERP effects, implying that letter-speech sound associations are less automatized in this group. Furthermore, we examined general visual conflict processing in a control visual interference task, using false fonts. The conflict in this experiment was based purely on the visual similarity of the presented objects. Visual conflict resulted in slower RTs, less negative N2 amplitudes and more positive cSP in both groups. Thus, on a general, basic level, visual conflict processing does not seem to be affected in children with dyslexia.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 99 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 99 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 23%
Student > Master 18 18%
Researcher 12 12%
Student > Bachelor 10 10%
Student > Doctoral Student 7 7%
Other 14 14%
Unknown 15 15%
Readers by discipline Count As %
Psychology 34 34%
Neuroscience 15 15%
Medicine and Dentistry 6 6%
Computer Science 4 4%
Linguistics 3 3%
Other 15 15%
Unknown 22 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 March 2017.
All research outputs
#14,510,779
of 23,344,526 outputs
Outputs from Frontiers in Human Neuroscience
#4,561
of 7,271 outputs
Outputs of similar age
#173,754
of 308,750 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#134
of 188 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,271 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,750 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 188 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.