↓ Skip to main content

Influence of Cervical Spine Mobility on the Focal and Postural Components of the Sit-to-Stand Task

Overview of attention for article published in Frontiers in Human Neuroscience, March 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of Cervical Spine Mobility on the Focal and Postural Components of the Sit-to-Stand Task
Published in
Frontiers in Human Neuroscience, March 2017
DOI 10.3389/fnhum.2017.00129
Pubmed ID
Authors

Alain Hamaoui, Caroline Alamini-Rodrigues

Abstract

The aim of this study was to determine the influence of cervical spine mobility on the focal and postural components of the sit-to-stand transition, which represent the preparatory and execution phases of the task, respectively. Sixteen asymptomatic female participants (22 ± 3 years, 163 ± 0,06 cm, 57,5 ± 5 kg), free of any neurological or musculoskeletal disorders, performed six trials of the sit-to-stand task at maximum speed, in four experimental conditions varying the mobility of the cervical spine by means of three different splints. A six-channel force plate, which collected the reaction forces and moments applied at its top surface, was used to calculate the center of pressure displacements along the anterior-posterior and medial-lateral axes. The local accelerations of the head, spine, and pelvis, were assessed by three pairs of accelerometers, oriented along the vertical and anterior-posterior axes. Restriction of cervical spine mobility resulted in an increased duration of the focal movement, associated with longer and larger postural adjustments. These results suggest that restricted cervical spine mobility impairs the posturo-kinetic capacity during the sit-to-stand task, leading to a lower motor performance and a reorganization of the anticipatory postural adjustments. In a clinical context, it might be assumed that preserving the articular free play of the cervical spine might be useful to favor STS performance and autonomy.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 19%
Researcher 4 11%
Student > Master 4 11%
Student > Ph. D. Student 3 8%
Student > Doctoral Student 2 5%
Other 6 16%
Unknown 11 30%
Readers by discipline Count As %
Nursing and Health Professions 8 22%
Psychology 3 8%
Sports and Recreations 3 8%
Engineering 3 8%
Medicine and Dentistry 3 8%
Other 5 14%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2017.
All research outputs
#17,885,520
of 22,962,258 outputs
Outputs from Frontiers in Human Neuroscience
#5,723
of 7,180 outputs
Outputs of similar age
#220,318
of 308,511 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#163
of 183 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,180 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,511 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.