↓ Skip to main content

EEG Error Prediction as a Solution for Combining the Advantages of Retrieval Practice and Errorless Learning

Overview of attention for article published in Frontiers in Human Neuroscience, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
EEG Error Prediction as a Solution for Combining the Advantages of Retrieval Practice and Errorless Learning
Published in
Frontiers in Human Neuroscience, March 2017
DOI 10.3389/fnhum.2017.00140
Pubmed ID
Authors

Ellyn A. Riley, Dennis J. McFarland

Abstract

Given the frequency of naming errors in aphasia, a common aim of speech and language rehabilitation is the improvement of naming. Based on evidence of significant word recall improvements in patients with memory impairments, errorless learning methods have been successfully applied to naming therapy in aphasia; however, other evidence suggests that although errorless learning can lead to better performance during treatment sessions, retrieval practice may be the key to lasting improvements. Task performance may vary with brain state (e.g., level of arousal, degree of task focus), and changes in brain state can be detected using EEG. With the ultimate goal of designing a system that monitors patient brain state in real time during therapy, we sought to determine whether errors could be predicted using spectral features obtained from an analysis of EEG. Thus, this study aimed to investigate the use of individual EEG responses to predict error production in aphasia. Eight participants with aphasia each completed 900 object-naming trials across three sessions while EEG was recorded and response accuracy scored for each trial. Analysis of the EEG response for seven of the eight participants showed significant correlations between EEG features and response accuracy (correct vs. incorrect) and error correction (correct, self-corrected, incorrect). Furthermore, upon combining the training data for the first two sessions, the model generalized to predict accuracy for performance in the third session for seven participants when accuracy was used as a predictor, and for five participants when error correction category was used as a predictor. With such ability to predict errors during therapy, it may be possible to use this information to intervene with errorless learning strategies only when necessary, thereby allowing patients to benefit from both the high within-session success of errorless learning as well as the longer-term improvements associated with retrieval practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 15%
Student > Master 7 13%
Professor 5 9%
Student > Bachelor 5 9%
Student > Doctoral Student 4 8%
Other 12 23%
Unknown 12 23%
Readers by discipline Count As %
Psychology 16 30%
Medicine and Dentistry 3 6%
Neuroscience 3 6%
Social Sciences 3 6%
Nursing and Health Professions 2 4%
Other 8 15%
Unknown 18 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2017.
All research outputs
#15,697,185
of 26,556,730 outputs
Outputs from Frontiers in Human Neuroscience
#4,127
of 7,860 outputs
Outputs of similar age
#170,588
of 327,862 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#111
of 184 outputs
Altmetric has tracked 26,556,730 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,860 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.2. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,862 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 184 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.