↓ Skip to main content

Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

Overview of attention for article published in Frontiers in Human Neuroscience, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
5 X users

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits
Published in
Frontiers in Human Neuroscience, May 2017
DOI 10.3389/fnhum.2017.00231
Pubmed ID
Authors

Eraldo Paulesu, Tim Shallice, Laura Danelli, Maurizio Sberna, Richard S. J. Frackowiak, Chris D. Frith

Abstract

Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H2(15)O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 89 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 16%
Researcher 10 11%
Student > Bachelor 10 11%
Student > Ph. D. Student 10 11%
Student > Postgraduate 7 8%
Other 15 17%
Unknown 24 27%
Readers by discipline Count As %
Psychology 28 31%
Neuroscience 16 18%
Linguistics 4 4%
Social Sciences 4 4%
Agricultural and Biological Sciences 3 3%
Other 8 9%
Unknown 27 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2018.
All research outputs
#14,059,145
of 22,965,074 outputs
Outputs from Frontiers in Human Neuroscience
#4,307
of 7,181 outputs
Outputs of similar age
#168,879
of 313,707 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#138
of 193 outputs
Altmetric has tracked 22,965,074 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,181 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 193 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.