↓ Skip to main content

Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

Overview of attention for article published in Frontiers in Human Neuroscience, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
5 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition
Published in
Frontiers in Human Neuroscience, January 2018
DOI 10.3389/fnhum.2017.00662
Pubmed ID
Authors

Yinghua Yu, Jiajia Yang, Yoshimichi Ejima, Hidenao Fukuyama, Jinglong Wu

Abstract

In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII) receives projections from the unilateral primary somatosensory cortex (SI), and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI) and a delayed match-to-sample (DMS) task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left) SII activity was greater than ipsilateral (right) SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI) analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC). Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Researcher 5 13%
Student > Master 4 10%
Student > Bachelor 4 10%
Student > Doctoral Student 3 8%
Other 3 8%
Unknown 13 33%
Readers by discipline Count As %
Neuroscience 9 23%
Psychology 8 21%
Nursing and Health Professions 2 5%
Medicine and Dentistry 2 5%
Social Sciences 1 3%
Other 3 8%
Unknown 14 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 May 2020.
All research outputs
#14,088,972
of 23,015,156 outputs
Outputs from Frontiers in Human Neuroscience
#4,310
of 7,191 outputs
Outputs of similar age
#232,809
of 441,245 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#100
of 145 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,191 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,245 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.