↓ Skip to main content

Cerebellar Transcranial Direct Current Stimulation Modulates Corticospinal Excitability During Motor Training

Overview of attention for article published in Frontiers in Human Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cerebellar Transcranial Direct Current Stimulation Modulates Corticospinal Excitability During Motor Training
Published in
Frontiers in Human Neuroscience, April 2018
DOI 10.3389/fnhum.2018.00118
Pubmed ID
Authors

Rebekah L. S. Summers, Mo Chen, Andrea Hatch, Teresa J. Kimberley

Abstract

Background: Cerebellar activity can be modulated using cerebellar transcranial direct current stimulation (ctDCS) and, when applied concurrently with task training, has been shown to facilitate cognitive and motor performance. However, how ctDCS facilitates motor performance is not fully understood. Objective/Hypothesis: To assess the electrophysiological and motor performance effects of ctDCS applied during motor training. Methods: Fourteen healthy adults (age 28.8 ± 10.5 years) were randomly assigned to complete one session of finger tracking training with either simultaneous bilateral anodal or sham ctDCS. Training was completed in two 15 min epochs with a 5-min break (total 30 min stimulation, 2 mA). Tracking accuracy and corticospinal and intracortical excitability were measured immediately before and after the training period. Motor cortical excitability measures included resting motor threshold (RMT), motor evoked potential (MEP) amplitude, cortical silent period (CSP) and short interval intracortical inhibition (SICI). Results: There was a significant interaction of Group * Time for MEP amplitude and CSP duration (p < 0.01). Post hoc analysis revealed MEP amplitude was increased in the sham group (p < 0.01), indicating increased corticospinal excitability from baseline while the anodal group displayed a decrease in MEP amplitude (p = 0.023) and prolongation of CSP duration (p < 0.01). SICI and RMT remained unchanged following ctDCS and training. Task accuracy was improved in both groups at post-test with a significant effect of Time (p < 0.01); however, there was no effect of Group (p = 0.45) or interaction of Group * Time (p = 0.83). During training, there was a significant effect of Block (p < 0.01) but no significant effect of Group or interaction effect (p > 0.06). Conclusions: ctDCS applied during task training is capable of modulating or interfering with practice-related changes in corticospinal excitability without disrupting performance improvement.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 18%
Student > Bachelor 8 16%
Student > Ph. D. Student 8 16%
Student > Doctoral Student 3 6%
Researcher 3 6%
Other 4 8%
Unknown 15 30%
Readers by discipline Count As %
Neuroscience 8 16%
Engineering 5 10%
Medicine and Dentistry 5 10%
Psychology 3 6%
Nursing and Health Professions 3 6%
Other 7 14%
Unknown 19 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2018.
All research outputs
#14,378,457
of 23,026,672 outputs
Outputs from Frontiers in Human Neuroscience
#4,597
of 7,194 outputs
Outputs of similar age
#186,773
of 329,264 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#97
of 136 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,194 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,264 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.