↓ Skip to main content

Cortical Plasticity After Surgical Tendon Transfer in Tetraplegics

Overview of attention for article published in Frontiers in Human Neuroscience, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

news
1 news outlet
twitter
9 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cortical Plasticity After Surgical Tendon Transfer in Tetraplegics
Published in
Frontiers in Human Neuroscience, June 2018
DOI 10.3389/fnhum.2018.00234
Pubmed ID
Authors

Knut Wester, Leiv M. Hove, Roger Barndon, Alexander R. Craven, Kenneth Hugdahl

Abstract

Background: Developmental cortical plasticity with reorganization of cerebral cortex, has been known to occur in young and adult animals after permanent, restricted elimination of afferent (visual or somatosensory) input. In animals, cortical representation of unaffected muscles or sensory areas has been shown to invade the neighboring cortex when this is deprived of its normal sensory input or motor functions. Some studies indicate that similar cortical plasticity may take place in adult humans. Methods: In patients with a high cervical spinal cord injury leaving the patient without any movements of the fingers, we performed fMRI studies of the cortical representation of an elbow flexor muscle before and after a surgical procedure that changed its function to a thumb flexor, thus providing the patient with a useful grip. Results: Preoperatively, the elbow flexion movement was elicited from a cortical area corresponding with the "elbow area" in healthy individuals. Despite the fact that an elbow flexor was used for the post-operative key-grip, this movement in the tetraplegic patients was elicited from a similar brain region as in healthy controls (the "hand area"). This supports our hypothesis that control of that muscle shifts from a brain region typically associated with elbow movement, to one typically associated with wrist movements. Conclusion: The findings presented here show with fMRI that the human cortex is capable of reorganizing itself spatially after a relatively acute change in the periphery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 33%
Student > Ph. D. Student 2 22%
Professor 1 11%
Librarian 1 11%
Student > Bachelor 1 11%
Other 1 11%
Readers by discipline Count As %
Medicine and Dentistry 2 22%
Psychology 2 22%
Nursing and Health Professions 1 11%
Neuroscience 1 11%
Engineering 1 11%
Other 0 0%
Unknown 2 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2023.
All research outputs
#2,477,032
of 25,030,708 outputs
Outputs from Frontiers in Human Neuroscience
#1,161
of 7,603 outputs
Outputs of similar age
#49,287
of 334,510 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#15
of 133 outputs
Altmetric has tracked 25,030,708 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,603 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,510 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.