↓ Skip to main content

Adaptation in Gait to Lunar and Martian Gravity Unloading During Long-Term Isolation in the Ground-Based Space Station Model

Overview of attention for article published in Frontiers in Human Neuroscience, January 2022
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adaptation in Gait to Lunar and Martian Gravity Unloading During Long-Term Isolation in the Ground-Based Space Station Model
Published in
Frontiers in Human Neuroscience, January 2022
DOI 10.3389/fnhum.2021.742664
Pubmed ID
Authors

Alina Saveko, Vitaly Brykov, Vladimir Kitov, Alexey Shpakov, Elena Tomilovskaya

Abstract

The aim of the experiment was to evaluate the adaptive responses of biomechanical and electromyographic parameters to vertical unloading (Lunar-0.15 G and Martian-0.35 G) when walking during the 4-month isolation experiment SIRIUS-19 in the ground-based space station model (GBI). The study involved 6 healthy international crew members of the SIRIUS-19 project aged 34 ± 6.2 years (3 women and 3 men). Body Weight Unloading (BWU) conditions was created by the h/p/cosmos airwalk system. The locomotor test included walking (3.5 ± 0.3 km/h) with a sequential change of BWU modes: 5-min walking with 0% BWU (1 G), 5-min walking with 65% BWU (0.35 G) and 5-min walking with 85% BWU (0.15 G). Ground Reaction Force was recorded by the h/p/cosmos treadmill device. Muscle Lab Model 4000e device was used to record the electromyographic signals of the hip and shin muscles. The locomotor test was performed twice before GBI, monthly during GBI and 1 week after leaving isolation. The results obtained before GBI demonstrate that the changes of support and proprioceptive afferentation signals play significant role in reorganizing of the biomechanical structure of motor acts and the development of new movement patterns. The results of the study are consistent with the previously obtained results of other studies in this direction. Despite the fact that during the GBI the participants of the experiment performed regular physical training, a decrease in the performance indicators values was detected, especially pronounced after 100 days of GBI. This is probably due to limited space of a space station model, as well as the development of a special motor stereotype in it. Noteworthy are the results obtained after the 4th session of the experiment, indicating the effect of sensorimotor learning. We think that the data obtained in this study will be useful in research both in gravitational physiology and in clinical medicine.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 14%
Student > Bachelor 1 7%
Professor 1 7%
Unspecified 1 7%
Unknown 9 64%
Readers by discipline Count As %
Unspecified 1 7%
Computer Science 1 7%
Sports and Recreations 1 7%
Engineering 1 7%
Unknown 10 71%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 March 2022.
All research outputs
#15,659,831
of 23,269,984 outputs
Outputs from Frontiers in Human Neuroscience
#5,328
of 7,254 outputs
Outputs of similar age
#285,288
of 510,718 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#101
of 163 outputs
Altmetric has tracked 23,269,984 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,254 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 510,718 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.