↓ Skip to main content

Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study

Overview of attention for article published in Frontiers in Neuroinformatics, July 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
114 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study
Published in
Frontiers in Neuroinformatics, July 2018
DOI 10.3389/fninf.2018.00044
Pubmed ID
Authors

Antonio Cerasa, Loris Pignolo, Vera Gramigna, Sebastiano Serra, Giuseppe Olivadese, Federico Rocca, Paolo Perrotta, Giuliano Dolce, Aldo Quattrone, Paolo Tonin

Abstract

Background: Technology-supported rehabilitation is emerging as a solution to support therapists in providing a high-intensity, repetitive and task-specific treatment, aimed at improving stroke recovery. End-effector robotic devices are known to positively affect the recovery of arm functions, however there is a lack of evidence regarding exoskeletons. This paper evaluates the impact of cerebral lesion load on the response to a validated robotic-assisted rehabilitation protocol. Methods: Fourteen hemiparetic patients were assessed in a within-subject design (age 66.9 ± 11.3 years; 10 men and 4 women). Patients, in post-acute phase, underwent 7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a conventional treatment (consisting of simple physical activity together with occupational therapy). Clinical and neuroimaging evaluations were performed immediately before and after rehabilitation treatments. Fugl-Meyer (FM) and Motricity Index (MI) were selected to measure primary outcomes, i.e., motor function and strength. Functional independance measure (FIM) and Barthel Index were selected to measure secondary outcomes, i.e., daily living activities. Voxel-based lesion symptom mapping (VLSM) was used to determine the degree of cerebral lesions associated with motor recovery. Results: Robot-assisted rehabilitation was effective in improving upper limb motor function recovery, considering both primary and secondary outcomes. VLSM detected that lesion load in the superior region of the corona radiata, internal capsule and putamen were significantly associated with recovery of the upper limb as defined by the FM scores (p-level < 0.01). Conclusions: The probability of functional recovery from stroke by means of exoskeleton robotic rehabilitation relies on the integrity of specific subcortical regions involved in the primary motor pathway. This is consistent with previous evidence obtained with conventional neurorehabilitation approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 114 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 114 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 25 22%
Student > Bachelor 17 15%
Researcher 15 13%
Student > Ph. D. Student 11 10%
Student > Doctoral Student 5 4%
Other 5 4%
Unknown 36 32%
Readers by discipline Count As %
Engineering 27 24%
Nursing and Health Professions 18 16%
Medicine and Dentistry 9 8%
Neuroscience 7 6%
Sports and Recreations 3 3%
Other 16 14%
Unknown 34 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2018.
All research outputs
#17,981,442
of 23,092,602 outputs
Outputs from Frontiers in Neuroinformatics
#599
of 757 outputs
Outputs of similar age
#214,564
of 296,617 outputs
Outputs of similar age from Frontiers in Neuroinformatics
#17
of 21 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 757 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,617 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.