↓ Skip to main content

Proposed evolutionary changes in the role of myelin

Overview of attention for article published in Frontiers in Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Proposed evolutionary changes in the role of myelin
Published in
Frontiers in Neuroscience, January 2013
DOI 10.3389/fnins.2013.00202
Pubmed ID
Authors

Klaus M. Stiefel, Benjamin Torben-Nielsen, Jay S. Coggan

Abstract

Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later "Mesozoic marine revolution," marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 52 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 23%
Student > Ph. D. Student 11 21%
Student > Bachelor 5 9%
Student > Master 5 9%
Student > Doctoral Student 3 6%
Other 6 11%
Unknown 11 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 17%
Neuroscience 9 17%
Biochemistry, Genetics and Molecular Biology 4 8%
Environmental Science 3 6%
Earth and Planetary Sciences 2 4%
Other 9 17%
Unknown 17 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2013.
All research outputs
#17,286,379
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#8,067
of 11,542 outputs
Outputs of similar age
#193,615
of 289,004 outputs
Outputs of similar age from Frontiers in Neuroscience
#158
of 246 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,004 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 246 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.