↓ Skip to main content

Evaluating auditory stream segregation of SAM tone sequences by subjective and objective psychoacoustical tasks, and brain activity

Overview of attention for article published in Frontiers in Neuroscience, June 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluating auditory stream segregation of SAM tone sequences by subjective and objective psychoacoustical tasks, and brain activity
Published in
Frontiers in Neuroscience, June 2014
DOI 10.3389/fnins.2014.00119
Pubmed ID
Authors

Lena-Vanessa Dolležal, André Brechmann, Georg M. Klump, Susann Deike

Abstract

Auditory stream segregation refers to a segregated percept of signal streams with different acoustic features. Different approaches have been pursued in studies of stream segregation. In psychoacoustics, stream segregation has mostly been investigated with a subjective task asking the subjects to report their percept. Few studies have applied an objective task in which stream segregation is evaluated indirectly by determining thresholds for a percept that depends on whether auditory streams are segregated or not. Furthermore, both perceptual measures and physiological measures of brain activity have been employed but only little is known about their relation. How the results from different tasks and measures are related is evaluated in the present study using examples relying on the ABA- stimulation paradigm that apply the same stimuli. We presented A and B signals that were sinusoidally amplitude modulated (SAM) tones providing purely temporal, spectral or both types of cues to evaluate perceptual stream segregation and its physiological correlate. Which types of cues are most prominent was determined by the choice of carrier and modulation frequencies (f mod) of the signals. In the subjective task subjects reported their percept and in the objective task we measured their sensitivity for detecting time-shifts of B signals in an ABA- sequence. As a further measure of processes underlying stream segregation we employed functional magnetic resonance imaging (fMRI). SAM tone parameters were chosen to evoke an integrated (1-stream), a segregated (2-stream), or an ambiguous percept by adjusting the f mod difference between A and B tones (Δf mod). The results of both psychoacoustical tasks are significantly correlated. BOLD responses in fMRI depend on Δf mod between A and B SAM tones. The effect of Δf mod, however, differs between auditory cortex and frontal regions suggesting differences in representation related to the degree of perceptual ambiguity of the sequences.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Netherlands 1 3%
Unknown 33 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Researcher 6 17%
Student > Bachelor 4 11%
Student > Master 4 11%
Other 2 6%
Other 3 9%
Unknown 8 23%
Readers by discipline Count As %
Neuroscience 7 20%
Engineering 5 14%
Agricultural and Biological Sciences 4 11%
Psychology 2 6%
Physics and Astronomy 2 6%
Other 5 14%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2014.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#8,668
of 11,538 outputs
Outputs of similar age
#168,690
of 242,854 outputs
Outputs of similar age from Frontiers in Neuroscience
#75
of 111 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,854 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.