↓ Skip to main content

Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders

Overview of attention for article published in Frontiers in Neuroscience, June 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders
Published in
Frontiers in Neuroscience, June 2014
DOI 10.3389/fnins.2014.00128
Pubmed ID
Authors

Jeffrey J. Olney, Montserrat Navarro, Todd E. Thiele

Abstract

The melanocortin (MC) peptides are produced centrally by propiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus and act through five seven-transmembrane G-protein coupled melanocortin receptor (MCR) subtypes. The MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed in brain regions known to modulate neurobiological responses to ethanol, including regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP), also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and functions as an endogenous MCR antagonist. This review highlights recent genetic and pharmacological findings that have implicated roles for the MC and AgRP systems in modulating ethanol consumption. Ethanol consumption is associated with significant alterations in the expression levels of various MC peptides/protein, which suggests that ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R, suggesting that the protective effects of MCR agonists are modulated by the MC4R. Interestingly, recent evidence reveals that MCR agonists are more effective at blunting binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary and binge-like ethanol drinking, consistent with pharmacological studies. Collectively, these preclinical observations provide compelling evidence that compounds that target the MC system may provide therapeutic value for treating alcohol abuse disorders and that the utilization of currently available MC-targeting compounds- such as those being used to treat eating disorders- may be used as effective treatments to this end.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 23%
Student > Ph. D. Student 7 20%
Student > Doctoral Student 4 11%
Student > Bachelor 3 9%
Researcher 2 6%
Other 6 17%
Unknown 5 14%
Readers by discipline Count As %
Neuroscience 12 34%
Agricultural and Biological Sciences 7 20%
Social Sciences 3 9%
Psychology 2 6%
Unspecified 1 3%
Other 2 6%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2014.
All research outputs
#15,983,785
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#6,983
of 11,541 outputs
Outputs of similar age
#130,653
of 242,010 outputs
Outputs of similar age from Frontiers in Neuroscience
#59
of 111 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,541 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,010 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.